Skip to main content
Log in

Cadmium exposure decreases fasting blood glucose levels and exacerbates type-2 diabetes in a mouse model

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Although the effects of cadmium (Cd) on the development of diabetes have been extensively investigated, the relationship between Cd exposure and the severity of established diabetes is unclear. Herein, we investigate the effects of long-term exposure to Cd in a streptozotocin-induced mouse model of type-2 diabetes mellitus (T2DM) and the underlying mechanism.

Methods

C57BL/6 Mice were divided into the following four groups: (1) control group; (2) Cd-exposed group; (3) diabetic group; (4) Cd-exposed diabetic group. Cd exposure was established by the administration of 155 ppm CdCl2 in drinking water. After 25 weeks of treatment, serum fasting glucose and insulin were measured. Meanwhile, the liver and pancreas specimens were sectioned and stained with Hematoxylin and eosin. Gluconeogenesis, glycolysis, lactate concentration, and fibrosis in liver were evaluated.

Results

Clinical signs attributable to diabetes were more apparent in Cd-exposed diabetic mice, while no effects of Cd exposure were found on non-diabetic mice. Cd exposure significantly decreased fasting blood glucose (FBG) levels in diabetic group. We further demonstrated that the glycolysis related hepatic enzymes, pyruvate kinase M2 (PKM-2) and lactic dehydrogenase A (LDHA) were both increased, while the gluconeogenesis related hepatic enzymes, phosphoenolpyruvate-1 (PCK-1) and glucose-6-phosphatase (G6Pase) were both decreased in Cd exposed diabetic mice, indicating that Cd increased glycolysis and inhibited gluconeogenesis in diabetic model. Moreover, lactate accumulation was noted accompanied by the increased inflammation and fibrosis in the livers of diabetic mice following Cd exposure.

Conclusions

Cd exposure disturbed glucose metabolism and exacerbated diabetes, providing a biological relevance that DM patients are at greater risk when exposed to Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cd decreased fasting blood glucose and serum insulin concentrations in diabetic mice.
Fig. 2: Cd enhanced glycolysis and inhibited gluconeogenesis in diabetic mice.
Fig. 3: Cd increases liver lactate and inflammation levels in diabetic mice.
Fig. 4: Cd promoted liver fibrosis in diabetic mice.

Similar content being viewed by others

References

  1. K. Kaul, J.M. Tarr, S.I. Ahmad, E.M. Kohner, R. Chibber, Introduction to diabetes mellitus. Adv. Exp. Med. Biol. 771, 1–11 (2012). http://www.ncbi.nlm.nih.gov/pubmed/23393665.

  2. A. Katsarou, S. Gudbjornsdottir, A. Rawshani, D. Dabelea, E. Bonifacio, B.J. Anderson et al. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers. 3(Mar), 17016 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28358037.

  3. A.A. Tinkov, T. Filippini, O.P. Ajsuvakova, J. Aaseth, Y.G. Gluhcheva, J.M. Ivanova et al. The role of cadmium in obesity and diabetes. The Sci. Total Environ. 601602(Dec), 741–755 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28577409.

  4. W. Liu, B. Zhang, Z. Huang, X. Pan, X. Chen, C. Hu et al. Cadmium body burden and gestational diabetes mellitus: a prospective study. Environ. Health Perspect. 126(Feb), 027006 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29425094.

  5. N. Kandasamy, N. Ashokkumar, Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats. Toxicol. Appl. Pharmacol. 279(Sep), 173–185 (2014). http://www.ncbi.nlm.nih.gov/pubmed/24923654.

  6. T. Senthilkumar, N. Sangeetha, N. Ashokkumar, Antihyperglycemic, antihyperlipidemic, and renoprotective effects of Chlorella pyrenoidosa in diabetic rats exposed to cadmium. Toxicol Mech. Methods 22(Oct), 617–624 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22827700.

  7. R. Fitzgerald, A. Olsen, J. Nguyen, W. Wong, M. El Muayed, J. Edwards, Pancreatic Islets Accumulate Cadmium in a Rodent Model of Cadmium-Induced Hyperglycemia. Int. J Mol. Sci. 22(Dec), 360 (2020). http://www.ncbi.nlm.nih.gov/pubmed/33396420.

  8. C. Zhang, T. Lin, G. Nie, R. Hu, S. Pi, Z. Wei et al. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells. Environ. Pollut. 272(Mar), 116403 (2021). http://www.ncbi.nlm.nih.gov/pubmed/33433347.

  9. Y. Wang, A.K. Mandal, Y.O. Son, P. Pratheeshkumar, J.T.F. Wise, L. Wang et al. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol. 353(Aug), 23–30 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29885333.

  10. C.C. Huang, C.Y. Kuo, C.Y. Yang, J.M. Liu, R.J. Hsu, K.I. Lee et al. Cadmium exposure induces pancreatic beta-cell death via a Ca(2+)-triggered JNK/CHOP-related apoptotic signaling pathway. Toxicology 425(Sep), 152252 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31348969.

  11. W.P.S. Wong, J.C. Wang, M.J. Schipma, X. Zhang, J.R. Edwards, M. El-Muayed, Cadmium-mediated pancreatic islet transcriptome changes in mice and cultured mouse islets. Toxicol. Appl. Pharmacol. 433(Oct), 115756 (2021). http://www.ncbi.nlm.nih.gov/pubmed/34666113.

  12. T. Filippini, L.A. Wise, M. Vinceti, Cadmium exposure and risk of diabetes and prediabetes: a systematic review and dose-response meta-analysis. Environ. Int. 158(Oct), 106920 (2021). http://www.ncbi.nlm.nih.gov/pubmed/34628255.

  13. X. Li, M. Li, J. Xu, X. Zhang, W. Xiao, Z. Zhang, Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J. Toxicol. 2019, 8121834 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31320898.

  14. F.F. Guo, Z.Y. Hu, B.Y. Li, L.Q. Qin, C. Fu, H. Yu et al. Evaluation of the association between urinary cadmium levels below threshold limits and the risk of diabetes mellitus: a dose-response meta-analysis. Environ. Sci. Pollut. Res. Int. 26(Jul), 19272–19281 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31069655.

  15. L. Xiao, Y. Zhou, J. Ma, L. Cao, C. Zhu, W. Li et al. Roles of C-reactive protein on the association between urinary cadmium and type 2 diabetes. Environ. Pollut. 255(Dec), 113341 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31610512.

  16. R.A. Bernhoft, Cadmium toxicity and treatment. TheScientificWorldJournal 2013, 394652 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23844395.

  17. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment. Experientia Supplementum 101, 133–164 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22945569.

  18. G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, A. Catalano, The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 17(May), 3782 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32466586.

  19. S. Satarug, S.H. Garrett, M.A. Sens, D.A. Sens, Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 118(Feb), 182–190 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20123617.

  20. L.Y. Jiang, S.S. Tang, X.Y. Wang, L.P. Liu, Y. Long, M. Hu et al. PPARgamma agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci. Ther. 18(Aug), 659–666 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22620268.

  21. J.D. Clark, G.F. Gebhart, J.C. Gonder, M.E. Keeling, D.F. Kohn, Special Report: the 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 38, 41–48 (1997). http://www.ncbi.nlm.nih.gov/pubmed/11528046.

  22. S.L. Wu, Staging of type 2 diabetes mellitus. Genet. Mol. Res. 14(Mar), 2118–2121 (2015). http://www.ncbi.nlm.nih.gov/pubmed/25867358.

  23. M. Kanter, M. Yoruk, A. Koc, I. Meral, T. Karaca, Effects of cadmium exposure on morphological aspects of pancreas, weights of fetus and placenta in streptozotocin-induced diabetic pregnant rats. Biol. Trace Element Res. Summer 93, 189–200 (2003). http://www.ncbi.nlm.nih.gov/pubmed/12835501.

  24. T. Jin, B.J. Frankel, Cadmium-metallothionein nephrotoxicity is increased in genetically diabetic as compared with normal Chinese hamsters. Pharmacol. Toxicol. 79(Sep), 105–108 (1996). http://www.ncbi.nlm.nih.gov/pubmed/8884866.

  25. P.K. Singh, D. Baxi, R. Diwedi, A.V. Ramachandran, Prior cadmium exposure improves glucoregulation in diabetic rats but exacerbates effects on metabolic dysregulation, oxidative stress, and hepatic and renal toxicity. Drug Chem. Toxicol. 35(Apr), 167–177 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22268556.

  26. O.I. Oluranti, E.A. Agboola, N.E. Fubara, M.O. Ajayi, O.S. Michael, Cadmium exposure induces cardiac glucometabolic dysregulation and lipid accumulation independent of pyruvate dehydrogenase activity. Ann. Med. 53(Dec), 1108–1117 (2021). http://www.ncbi.nlm.nih.gov/pubmed/34259114.

  27. W. Qi, H.A. Keenan, Q. Li, A. Ishikado, A. Kannt, T. Sadowski et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med. 23(Jun), 753–762 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28436957.

  28. S. Datta, N. Chakrabarti, Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice. Neurochem. Int. 118(Sep), 23–33 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29678731.

  29. R. Xuan, L. Wang, M. Sun, G. Ren, M. Jiang, Effects of cadmium on carbohydrate and protein metabolisms in the freshwater crab Sinopotamon yangtsekiense. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 154(Sep 3), 268–274 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21726667/.

  30. X. Wang, Z. Li, Z. Gao, Q. Li, L. Jiang, C. Geng et al. Cadmium induces cell growth in A549 and HELF cells via autophagy-dependent glycolysis. Toxicology In Vitro: Int. J. Published Assoc. BIBRA 66(Aug), 104834 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32200033.

  31. F. Bovio, P. Melchioretto, M. Forcella, P. Fusi, C. Urani, Cadmium promotes glycolysis upregulation and glutamine dependency in human neuronal cells. Neurochem. Int. 149(Jul), 105144 (2021). http://www.ncbi.nlm.nih.gov/pubmed/34303722.

  32. T. Suhara, T. Hishiki, M. Kasahara, N. Hayakawa, T. Oyaizu, T. Nakanishi et al. Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle. Proc. Natl Acad. Sci. USA. 112(Sep), 11642–11647 (2015). http://www.ncbi.nlm.nih.gov/pubmed/26324945.

  33. H. Yan, W. Yang, F. Zhou, X. Li, Q. Pan, Z. Shen et al. Estrogen Improves Insulin Sensitivity and Suppresses Gluconeogenesis via the Transcription Factor Foxo1. Diabetes 68(Feb), 291–304 (2019). http://www.ncbi.nlm.nih.gov/pubmed/30487265.

  34. J. Goncalves, Y. Wan, X. Guo, K. Rha, B. LeBoeuf, L. Zhang et al. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. Elegans Males iSci. 23(Apr), 100990 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32240955.

  35. R.A. Robergs, C.R. McNulty, G.M. Minett, J. Holland, G. Trajano, Lactate, not Lactic Acid, is Produced by Cellular Cytosolic Energy Catabolism. Physiology 33(Jan), 10–12 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29212886.

  36. J. Seheult, G. Fitzpatrick, G. Boran, Lactic acidosis: an update. Clin. Chem. Labor. Med. 55(Mar), 322–333 (2017). http://www.ncbi.nlm.nih.gov/pubmed/27522622.

  37. H. Possemiers, L. Vandermosten, Van, P.E. den Steen, Etiology of lactic acidosis in malaria. PLoS Pathogens 17(Jan), e1009122 (2021). http://www.ncbi.nlm.nih.gov/pubmed/33411818.

  38. M. Wu, X. Huang, D. Yan, H. Pan, F. Li, M. Ren et al. Interactions among endotoxin, uric acid, and lactate in relation to the risk of type 2 diabetes: a population-based study. J. Diabetes. 12(Aug), 605–615 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32216058.

  39. T. Wang, K. Chen, W. Yao, R. Zheng, Q. He, J. Xia et al. Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J. Hepatol. 74(May), 1038–1052 (2021). http://www.ncbi.nlm.nih.gov/pubmed/33248168.

  40. P. Burra, C. Becchetti, G. Germani, NAFLD and liver transplantation: disease burden, current management and future challenges. JHEP Rep: Innov. Hepatol. 2(Dec), 100192 (2020). http://www.ncbi.nlm.nih.gov/pubmed/33163950.

  41. T. Wang, W. Yao, J. Li, Q. He, Y. Shao, F. Huang, Acetyl-CoA from inflammation-induced fatty acids oxidation promotes hepatic malate-aspartate shuttle activity and glycolysis. Am. J. Physiol. Endocrinol. Metab. 315(Oct), E496–E510 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29763372.

  42. Y.J. Liao, C.X. Xu, C.Q. Ma, Z.W. Qin, Y.J. Su, H.R. Zhu et al. [Effect of occupational factors on pre-diabetes mellitus among iron and steel workers]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 41(Jun), 929–933 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32564562.

  43. A.M. Yang, N. Cheng, H.Q. Pu, S.M. Liu, J.S. Li, B.A. Bassig, et al., Metal Exposure and Risk of Diabetes and Prediabetes among Chinese Occupational Workers. Biomed. Environ. Sci. 28(Dec), 875–883 (2015). http://www.ncbi.nlm.nih.gov/pubmed/26777907.

  44. M. Bennasar-Veny, S. Fresneda, A. Lopez-Gonzalez, C. Busquets-Cortes, A. Aguilo, A.M. Yanez, Lifestyle and Progressionto Type 2 Diabetes in a Cohort of Workers with Prediabetes. Nutrients 12(May), 1538 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32466178.

  45. L. Kozlowska, J. Gromadzinska, W. Wasowicz, Health risk in transport workers. Part II. Dietary compounds as modulators of occupational exposure to chemicals. Int. J. Occupational Med. Environ. Health 32(Jul), 441–464 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31099343.

  46. S. Baloch, T.G. Kazi, J.A. Baig, H.I. Afridi, M.B. Arain, Occupational exposure of lead and cadmium on adolescent and adult workers of battery recycling and welding workshops: adverse impact on health. Sci. Total Environ. 720(Jun), 137549 (2020). http://www.ncbi.nlm.nih.gov/pubmed/32135282.

Download references

Funding

This research was supported by the National Natural Scientific Funding of China (Nos. 81773414, 81703209 and 81872622) and this is a project funded by Priority Academic Program Development of Jiangsu Higher Education Insitiitutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

M.L., S.W., and Z.Z. conceived and designed the experiments; M.L., and S.W. performed the experiments; B.L., S.W., X.L., and Z.S. contributed reagents/materials/analysis tools; J.Z., M.L., X.L., and J.L. analyzed the data; M.L. and Z.Z. wrote the paper.

Corresponding authors

Correspondence to Jie Zhang or Zengli Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, S., Liu, X. et al. Cadmium exposure decreases fasting blood glucose levels and exacerbates type-2 diabetes in a mouse model. Endocrine 76, 53–61 (2022). https://doi.org/10.1007/s12020-021-02974-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02974-w

Keywords

Navigation