Skip to main content

Advertisement

Log in

Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Aims and designs

Metformin, an anti-diabetic drug, is the first line medication for the treatment of type 2 diabetes mellitus and some studies show its relationship with micro-RNAs. This study set up to determine the effect of metformin on miR223 expression and content of AKT/GLUT4 proteins in insulin resistant signaling in 3T3L1 cells and adipocyte of human diabetic patients.

Materials and methods

Subcutaneous adipose tissues were taken from newly diagnosed diabetic patients (HOMA-IR > 1.8), before and after three months treatment with 500 mg of metformin twice a day. Cellular homogenate was prepared and miR223 expression and AKT/GLUT4 protein expression were determined by quantitative real-time PCR and western blotting. The results were compared to insulin resistant 3T3L1 adipocytes that were treated with 10 mM Metformin.

Results

MiR223 expression was significantly overexpressed both in insulin-resistant 3T3L1 adipocytes compared to non-insulin resistant adipocytes and in human diabetic adipose tissue, compared to non-diabetics (P value < 0.01). Metformin treatment downregulated miR223 expression in both adipocytes and human diabetic adipose tissue. In contrast the IRS/PI3-K/AKT pathway signaling components, Akt and GLUT4 increased in insulin-resistant 3T3L1 adipocytes and human diabetic adipose tissue after three months of metformin treatment.

Conclusions

Metformin reduced insulin resistance in adipocytes by reduction of miR223 expression and improving of IRS/Akt/GLUT4 signaling pathways. Plasma miR223 expression of human diabetic patients was reduced by metformin treatment. These results point to a novel mechanism of miR223 in insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Saini, Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes 1(3), 68–75 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  2. T. Yamauchi, K. Tobe, H. Tamemoto, K. Ueki, Y. Kaburagi, R. Yamamoto-Honda et al. Insulin signaling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell Biol. 16, 3074–3084 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. E. Araki, M. Lipes, M.E. Patti, J.C. Brüning, B. Haag, R.S. Johnson et al. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186–190 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. S. Bhattacharya, DeyD, S.S. Roy, Molecular mechanism of insulin resistance. J. Biosci. 32(2), 405–413 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. M. Honardoost, E. Arefian, Molecular mechanism of insulin resistance. JQUMS 18(5), 57–64 (2014)

    Google Scholar 

  6. A.J. Mohiti, A.A. Mohiti, M. Rahimifard, M. Momtaz, Curcumin increases insulin sensitivity in C2C12muscle cells via AKT and AMPK signaling pathways. Cogent Food Agric. 5, 1577532 (2019)

    Article  CAS  Google Scholar 

  7. P.R. Shepherd, D.J. Withers, K. Siddle, Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L.A. Barbour, J. Shao, L. Qiao, W. Leitner, M. Anderson, J.E. Friedman et al. Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145, 1144–1150 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. G.K. Bandyopadhyay, J.G. Yu, J. Ofrecio, J.M. Olefsky, Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54, 2351–2359 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. A. Dresner, D. Laurent, M. Marcucci, M.E. Griffin, S. Dufour, G.W. Cline et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Investig. 103, 253–259 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. Balamatsias, A.M. Kong, J.E. Waters, A. Sriratana, R. Gurung, C.G. Bailey et al. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF)that promotes actin remodeling and GLUT4protein trafficking in adipocytes. J. Biol. Chem. 286(50), 43229–43240 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L.F. Michael, Z. Wu, R.B. Cheatham, P. Puigserver, G. Adelmant, J.J. Lehman et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl Acad. Sci. USA 98, 3820–3825 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Klip, M. Paguet, Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care. 13, 228–243 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. R.W. Schwenk, Y. Angin, L.K. Steinbusch, E. Dirkx, N. Hoebers, W.A. Coumans et al. Overexpression of vesicle-associatedmembrane protein (VAMP) 3, but notVAMP2, protects glucose transporter(GLUT) 4 protein translocation in an in vitromodel of cardiac insulin resistance. J. BiolChem 287, 37530–37539 (2012)

    CAS  Google Scholar 

  15. M.J. Thomson, M.G. Williams, S.C. Frost, Development of insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 272(12), 7759–7764 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. A. Absalan, A.J. Mohiti, H. Hadinedoushan, M.A. Khalili, Hydro-alcoholic cinnamon extract, enhances glucose transporter isotype-4 translocation from intracellular compartments into the cytoplasmic membrane of C2C12 myotubes. Indian J. Clin. Biochem. 27(4), 351–356 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  17. S.I. Itani, N. Ruderman, F. Schmieder, G. Boden, Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51, 2005–2011 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. J.D. McGarry, Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51, 7–18 (2001)

    Article  Google Scholar 

  19. A.R. Saltiel, C.R. Khan, Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. B.B. Kahn, J.S. Flier, Obesity and insulin resistance. J. Clin. Investig. 106, 473–481 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. A. Smith, Central role of the adipocyte in the insulin-sensitising and cardiovascular risk modifying actions of the thiazolidinediones. Scientific Affairs, Diabetes. 85, 1219–1231 (2003)

  22. P. Arner, The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol. Metab. 14, 137–145 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Mao, R. Mohan, S. Zhang, X. Tang, MicroRNAs as pharmacological targets in diabetes. Pharmacol. Res. 75, 37–47 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. Chen, H.Y. Lan, D.H. Roukos, W.C. Cho, Application of microRNAs in diabetes mellitus. Endocrinology 222, R1–R10 (2014)

    Article  CAS  Google Scholar 

  25. I.H. Demirsoy, D.Y. Ertural, E. Balci, U. Çınkır, K. Sezer, N. Aras, profiles of circulating mirnas following metformin treatment inpatients with type 2 diabetes. J. Med. Biochem. 37, 1–7 (2018)

    Article  CAS  Google Scholar 

  26. M.D. Williams, G.M. Mitchell, MicroRNAs in insulin resistance and obesity. Diabetes Res. 484696, 8 (2012)

    Google Scholar 

  27. J.A. Deiuliis, MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 40(1), 88–101 (2015)

    Article  CAS  Google Scholar 

  28. H. Zhu, S.W. Leung, Identification of microRNA biomarkers in type 2 diabetes:a meta-analysis of controlled profiling studies. Diabetologia 58, 900–911 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. H.Y. Ling, H.S. Ou, S.D. Feng, X.Y. Zhang, Q.H. Tuo, L.X. Chen et al. Changes in microrna (mir) profile and effects of mir-320 in insulin-resistant 3t3-l1 adipocytes. Clin. Exp. Pharmacol. Physiol. 36, e32–e9 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. M. Honardoost, M.R. Sarookhani, E. Arefian, M. Soleimani, Insulin resistance associated genes and miRNAs. Appl. Biochem. Biotechnol. 174, 63–80 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. G. Song, G. Xu, C. Ji, C. Shi, Y. Shen, L. Chen et al. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 533, 481–487 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. H.Y. Ling, B. Hu, X.B. Hu, J. Zhong, S.D. Feng, L. Qin et al. MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp. Clin. Endocrinol. Diabetes 120(09), 553–559 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. K.T. Uysal, S.M. Wiesbrock, M.W. Marino, G.S. Hotamisligil, Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. T.Y. Chuang, H.L. Wu, C.C. Chen, G.M. Gamboa, L.C. Layman, M.P. Diamond et al. MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue. J. Diabetes Res. 2015, 943659 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  35. A. He, L. Zhu, N. Gupta, Y. Chang, F. Fang, Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol. 21(11), 2785–2794 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. K. Zebisch, V. Voigt, M. Wabitsch, M. Brandsch, Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 425, 88–90 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. M. Weiland, A. Schurmann, W.E. Schmidt, H.G. Joost, Development of the hormone-sensitive glucose transport activity indifferentiating 3T3-L1 murine fibroblasts. Biochem. J. 270, 331–336 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D.Z. Malekpour, M. Nourbakhsh, Y. Naghiaee, R. Sharifi, A.J. Mohiti, Metformin reducesfibrosis factors in insulin resistant and hypertrophied adipocyte via integrin/ERK, collagenVI, apoptosis, and necrosis reduction. Life Sci. 233, 116682 (2019)

  39. G. Xu, C. Ji, G. Song, C. Zhao, C. Shi, L. Song et al. MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. Int. J. Obes. 39(10), 1523–1530 (2015)

    Article  CAS  Google Scholar 

  40. D. Vishwanath, H. Srinivasan, M.S. Patil, S. Seetarama, S.K. Agrawal, M.N. Dixit et al. Novel method to differentiate 3T3L1 cells in vitro to producehighly sensitive adipocytes for a GLUT4 mediated glucoseuptake using fluorescent glucose analog. J. Cell Commun. Signal. 7, 129–140 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  41. A. Mehra, I. Macdonald, T.S. Pillay, Variability in 3T3-L1 adipocyte differentiation depending on cell culture dish. Anal. Biochem. 362, 281–283 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. B.A. Nelson, K.A. Robinson, M.G. Buse, High glucose and glucosamine induce insulin resistance via different mechanisms in3T3-L1 adipocytes. Diabetes 49, 981–991 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. D.Z. Malekpour, A.J. Mohiti, M. Nourbakhsh, S. Teimourian, Y. Naghiaee, F. Jafary, Gene expression profile evaluation of integrins in 3T3-L1 cells differentiated toadipocyte, insulin resistant and hypertrophied cells. Genes. 710, 0378–1119 (2019)

  44. Y. Naghiaee, R. Didehdar, D.Z. Malekpour, F. Pourrajab, A.J. Mohiti, Descending expression of miR-320 in insulin resistant adipocytes treated with ascending concentrations of metformin. Biochem. Genet. (2020). https://doi.org/10.1007/s10528-020-09964-z

  45. D.W. Jung, H.H. Ha, X. Zheng, Y.T. Chang, D.R. Williams, Novel use of fluorescent glucose analogues to identify a new classof triazine-based insulin mimetics possessing useful secondary effects. Mol. Biosyst. 7, 346–358 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. T. Fontes, I. Brandao, R. Negrao, M.J. Martins, R. Monteiro, Autologous fat grafting: harvesting techniques. Ann. Med. Surg. 36, 212–218 (2018)

    Article  Google Scholar 

  47. A.L. Strong, P.S. Cederna, J.P. Rubin, S.R. Coleman, B. Levi, The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast. Reconstr. Surg. 136(4), 897–912 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. T. Skurk, H. Hauner, Primary culture of human adipocyte precursor cells: expansion and differentiation. Mol. Biol. 806, 215–226 (2012)

    CAS  Google Scholar 

  49. K.A. Carswell, M.J. Lee, S.K. Fried, Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol. Biol. 806, 203–214 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. X. Ge, S.C. Leow, D. Sathiakumar, W. Stünkel, A. Shabbir, J. Bok Yan So et al. Isolation and culture of human adipose-derived stem cells from subcutaneous and visceral white adipose tissue compartments. Bio-protocol. 6(22), (2016)

  51. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression datausing real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  52. T.D. Schmittgen, K.J. Livack, Analysing real time PCR data by the comparative CT method. Nat. Protoc. 3(6), 1101–1108 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. E. Flowers, B.E. Aouizerat, F. Abbasi, C. Lamendola, K.M. Grove, Y. Fukuoka et al. Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: Moving towards precision health for diabetes prevention. Metab. Clin. Exp. 64, 1051–1059 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. D. Hamam, M. Kassem, A. Aldahmash, N.M. Alajez, microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 15(24(4)), 417–425 (2015)

    Article  CAS  Google Scholar 

  55. A. Bagge, T.R. Clausen, S. Larsen, M. Ladefoged, M.W. Rosenstierne, L. Larsen et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreasesglucose-stimulated insulin secretion. Biochem. Biophys. Res. Commun. 426, 266–272 (2012)

    Article  CAS  PubMed  Google Scholar 

  56. Y.H. Chen, S. Heneidi, J.M. Lee, L.C. Layman, D.W. Stepp, G.M. Gamboa et al. MiRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patientsand women with insulin resistance. Diabetes 62, 2278–2286 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. H. Lu, R.J. Buchan, S.A. Cook, MicroRNA-223 regulates Glut4 expressionand cardiomyocyte glucose metabolism. Cardiovasc. Res. 86, 410–420 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. J. Shao, H. Yamashita, L. Qiao, J.E. Friedman, Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J. Endocrinol. 167(1), 107–115 (2000)

    Article  CAS  PubMed  Google Scholar 

  59. Y. Xing, J. Zhang, H. Wei, H. Zhang, Y. Guan, X. Wang et al. Reduction of the PI3K/Akt related signaling activities in skeletal muscle tissues involves insulin resistance in intrauterine growth restriction rats with catch-up growth. Plos ONE 14(5), e0216665 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  60. A. Krook, R.A. Roth, X.J. Jiang, J.R. Zierath, H. Wallberg-Henriksson, Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes 47(8), 1281–1286 (1998)

    Article  CAS  PubMed  Google Scholar 

  61. A. Leonardini, L. Laviola, S. Perrini, A. Natalicchio, F. Giorgino, Cross-talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009, 818945 (2009)

    Article  PubMed  CAS  Google Scholar 

  62. B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.) 122(6), 253–270 (2012)

    Article  CAS  Google Scholar 

  63. M.F. Riera, M.N. Galardo, E.H. Pellizzari, S.B. Meroni, S.B. Cigorraga, Molecular mechanisms involved in Sertoli cell adaptation to glucose deprivation. Am. J. Physiol. Endocrinol. Metab. 297(4), E907–E914 (2009)

    Article  CAS  PubMed  Google Scholar 

  64. Y. Tian, Y. Nan, L. Han, A. Zhang, G. Wang, Z. Jia et al. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int J. Oncol. 40(4), 1105–1112 (2012)

    CAS  PubMed  Google Scholar 

  65. R. Tao, J. Gong, X. Luo, M. Zang, W. Guo, R. Wen et al. AMPK exerts dual regulatory effects on the PI3K pathway. J. Mol. Signal 5(1), 1 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. A. Belfiore, GenuaM, R. Malaguarnera, PPAR-γ agonists and their effects on IGF-I receptor signaling: Implications for cancer. PPAR Res. 2009, 830501 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. X. Peng, K.W. Cheng, J. Ma, B. Chen, C.T. Ho, C. Lo et al. PPARγ-PI3K/AKT-NO signal pathway is involved in cardiomyocyte hypertrophy induced by high glucose and insulin. J. Diabetes Complicat. 29(6), 755–60 (2015)

    Article  Google Scholar 

  68. A. Bruckbauer, M.B. Zemel, Synergistic effects of metformin, resveratrol,and hydroxymethylbutyrate on insulin sensitivity. Diabetes, Metab. Syndr. Obes. Targets Ther. 6, 93–102 (2013)

    CAS  Google Scholar 

  69. R. Giannarelli, M. Aragona, A. Cappelli, S. Del Prato, Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 29, 6528–35 (2003)

    Article  Google Scholar 

  70. O. Acbay, S. Gundogdu, Can metformin reduce insulin resistance in polycysticovarysyndrome. Fertil. Steril. 65(5), 946–949 (1996)

    Article  CAS  PubMed  Google Scholar 

  71. G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 108(8), 1167–1174 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Y.H. Son, S. Ka, A.Y. Kim, J.B. Kim, Regulation of adipocyte differentiation via microRNAs. Endocrinol. Metab. 29(2), 122–135 (2014)

    Article  Google Scholar 

  73. A. Katsura, A. Morishita, H. Iwama, J. Tani, T. Sakamoto, M. Tatsuta et al. MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis. Int J. Mol. Med. 35(4), 877–884 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. K.I. Ansari, D. Ogawa, A.K. Rooj, S.E. Lawler, A.M. Krichevsky, M.D. Johnson et al. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep. 11(6), 902–909 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. A. Martinez-Sanchez, M.S. Nguyen-Tu, I. Cebola, A. Yavari, P. Marchetti, L. Piemonti et al. MiR-184 expression is regulated by AMPK in pancreatic islets. FASEB J. 32(5), 2587–2600 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  76. E.M. Kroh, PR, P. Mitchell, M. Tewari, Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRTPCR). Methods 50, 298–301 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. D.P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the staff at Yazd Diabetes Research Center and the surgical team at Shahid Sadoughi Hospital. In addition, we are thankful for the contribution of the patients and control subjects who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mohiti-Ardakani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghiaee, Y., Didehdar, R., Pourrajab, F. et al. Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue. Endocrine 70, 498–508 (2020). https://doi.org/10.1007/s12020-020-02459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02459-2

Keywords

Navigation