Skip to main content

Advertisement

Log in

Clinical diagnostic performance of a fully automated TSI immunoassay vs. that of an automated anti‑TSHR immunoassay for Graves’ disease: a Chinese multicenter study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Both thyroid-stimulating immunoglobulins immunoassay (TSI IA) and thyrotrophin receptor antibody immunoassay (TRAb IA) are commonly used for the diagnosis of Graves’ disease (GD). The aim of the present study was to compare the clinical diagnostic performance of these two methods.

Methods

Sera were obtained from 1103 subjects presenting a variety of clinical conditions from three centers: 100 subjects with untreated GD, 200 with treated GD, 62 with autoimmune thyroid disease(AIT), 216 with other thyroid diseases (OTHER-T), 214 with non-thyroid autoimmune diseases (NTAD), 191 with other diseases (OD), and 120 healthy subjects (HS). Both TSI and TRAb IAs were performed for all 1013 serum samples. Bioassay was performed for 86 samples whose TSI results were inconsistent the TRAb assay results.

Results

Comparing untreated GD patients with the control groups (AIT, NTAD, OTHER-T, OD, and HS) resulted in an area under the curve (AUC) of 0.992 for the TSI IA and 0.989 for the TRAb IA with no statistically significant difference observed between these AUC values (P = 0.2733). The best TSI CDP (clinical decision point) value was 0.42 IU/L. The differences in sensitivity (100% vs. 95%, P = 0.7991) and specificity (97.1% vs. 97.6%, P = 0.9426) between the TSI and TRAb IA were not statistically significant. TSI IA had a higher agreement with the TSI bioassay than TRAb IA.

Conclusion

The clinical diagnostic performance of the TSI IA for diagnosing Graves’ disease was very similar to that of the TRAb IA. TSI IA can be used to diagnose GD in the Chinese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TSHR:

Thyroid-stimulating hormone receptor

TRAb:

Thyrotrophin receptor antibody

TSI:

Thyroid-stimulating immunoglobulin

GD:

Graves’ disease

TSBAb:

Thyroid-stimulating blocking antibody

IA:

Immunoassay

BA:

Bioassay

M22:

Human TSHR-stimulating antibody

GD-UT:

Untreated Graves’ disease

GD-T:

Treated Graves’ disease

AIT:

Autoimmune thyroiditis

OTHER-T:

Other thyroid diseases

NTAD:

Non-thyroid autoimmune diseases

OD:

Other diseases

HS:

Healthy subjects

ROC:

Receiver operating characteristic

hTSHR:

Human thyroid-stimulating hormone receptor

TG-Ab:

Thyroglobulin antibody

TPO-Ab:

Thyroid peroxidase antibody

TSH:

Thyroid stimulating hormone

FT4:

Free thyroxine

FT3:

Free triiodothyronine

TT4:

Total thyroxine

TT3:

Total triiodothyrogen

CV:

Coefficient of variation

SE:

Sensitivity

SP:

Specificity

ICC:

Interclass correlation coefficient

CDP:

Clinical decision point

References

  1. T.J. Smith, L. Hegedus, Graves’ disease. N. Engl. J. Med. 375(16), 1552–1565 (2016)

    Article  Google Scholar 

  2. M.B. Zimmermann, K. Boelaert, Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 3(4), 286–295 (2015)

    Article  CAS  Google Scholar 

  3. F. Brandt, D. Almind, K. Christensen, A. Green, T.H. Brix, L. Hegedus, Excess mortality in hyperthyroidism: the influence of preexisting comorbidity and genetic confounding: a danish nationwide register-based cohort study of twins and singletons. J. Clin. Endocrinol. Metab. 97(11), 4123–4129 (2012)

    Article  CAS  Google Scholar 

  4. S. De Leo, S.Y. Lee, L.E. Braverman, Hyperthyroidism. Lancet (Lond., Engl.) 388(10047), 906–918 (2016)

    Article  Google Scholar 

  5. T. Diana, P.D. Olivo, G.J. Kahaly, Thyrotropin receptor blocking antibodies. Hormone Metab. Res. 50(12), 853–862 (2018)

    Article  CAS  Google Scholar 

  6. S.A. Morshed, T.F. Davies, Graves’ disease mechanisms: the role of stimulating, blocking, and cleavage region TSH receptor antibodies. Hormone Metab. Res. 47(10), 727–734 (2015)

    Article  CAS  Google Scholar 

  7. B.R. Smith, R. Hall, Thyroid-stimulating immunoglobulins in Graves’ disease. Lancet (Lond., Engl.) 2(7878), 427–431 (1974)

    Article  CAS  Google Scholar 

  8. K. Southgate, F. Creagh, M. Teece, C. Kingswood, B. Rees Smith, A receptor assay for the measurement of TSH receptor antibodies in unextracted serum. Clin. Endocrinol. 20(5), 539–548 (1984)

    Article  CAS  Google Scholar 

  9. J. Bolton, J. Sanders, Y. Oda, C. Chapman, R. Konno, J. Furmaniak, B. Rees Smith, Measurement of thyroid-stimulating hormone receptor autoantibodies by ELISA. Clin. Chem. 45(12), 2285–2287 (1999)

    Article  CAS  Google Scholar 

  10. S. Costagliola, N.G. Morgenthaler, R. Hoermann, K. Badenhoop, J. Struck, D. Freitag, S. Poertl, W. Weglohner, J.M. Hollidt, B. Quadbeck et al. Second generation assay for thyrotropin receptor antibodies has superior diagnostic sensitivity for Graves’ disease. J. Clin. Endocrin. Metab. 84(1), 90–97 (1999)

    CAS  Google Scholar 

  11. B.R. Smith, J. Bolton, S. Young, A. Collyer, A. Weeden, J. Bradbury, D. Weightman, P. Perros, J. Sanders, J. Furmaniak, A new assay for thyrotropin receptor autoantibodies. Thyroid 14(10), 830–835 (2004)

    Article  CAS  Google Scholar 

  12. M. Schott, D. Hermsen, M. Broecker-Preuss, M. Casati, J.C. Mas, A. Eckstein, D. Gassner, R. Golla, C. Graeber, J. van Helden et al. Clinical value of the first automated TSH receptor autoantibody assay for the diagnosis of Graves’ disease (GD): an international multicentre trial. Clin. Endocrinol. 71(4), 566–573 (2009)

    Article  CAS  Google Scholar 

  13. G.J. Kahaly, L. Bartalena, L. Hegedus, L. Leenhardt, K. Poppe, S.H. Pearce, 2018 European Thyroid Association guideline for the management of Graves’ hyperthyroidism. Eur. Thyroid J. 7(4), 167–186 (2018)

    Article  CAS  Google Scholar 

  14. S.D. Lytton, G.J. Kahaly, Bioassays for TSH-receptor autoantibodies: an update. Autoimm. Rev. 10(2), 116–122 (2010)

    Article  CAS  Google Scholar 

  15. C. Autilio, R. Morelli, P. Locantore, A. Pontecorvi, C. Zuppi, C. Carrozza, Stimulating TSH receptor autoantibodies immunoassay: analytical evaluation and clinical performance in Graves’ disease. Annal. Clin. Biochem. 55(1), 172–177 (2018)

    Article  CAS  Google Scholar 

  16. S. Allelein, M. Ehlers, S. Goretzki, D. Hermsen, J. Feldkamp, M. Haase, T. Dringenberg, C. Schmid, H. Hautzel, M. Schott, Clinical evaluation of the first automated assay for the detection of stimulating TSH receptor autoantibodies. Hormone Metab. Res. 48(12), 795–801 (2016)

    Article  CAS  Google Scholar 

  17. R. Tozzoli, F. D’Aurizio, D. Villalta, L. Giovanella, Evaluation of the first fully automated immunoassay method for the measurement of stimulating TSH receptor autoantibodies in Graves’ disease. Clin. Chem. Lab. Med. 55(1), 58–64 (2017)

    Article  CAS  Google Scholar 

  18. X.H. Wan. Diagnostics (The 8th edition). (People’s Medical Publishing House, Beijing, China, 2013)

    Google Scholar 

  19. K. Soeby, P.B. Jensen, T. Werge, S. Sorensen, Mining of hospital laboratory information systems: a model study defining age- and gender-specific reference intervals and trajectories for plasma creatinine in a pediatric population. Clin. Chem. Lab. Med. 53(10), 1621–1630 (2015)

    Article  CAS  Google Scholar 

  20. J. Yoshimura Noh, N. Miyazaki, K. Ito, K. Takeda, S. Hiramatsu, S. Morita, A. Miyauchi, T. Murakami, K. Inomata, S. Noguchi et al. Evaluation of a new rapid and fully automated electrochemiluminescence immunoassay for thyrotropin receptor autoantibodies. Thyroid 18(11), 1157–1164 (2008)

    Article  CAS  Google Scholar 

  21. S. Doroudian, I.B. Pedersen, C.S. Knudsen, A. Handberg, S.L. Andersen, Comparison of three competitive immunoassays for measurement of TSH receptor antibodies in patients with Graves’ disease. Scand. J. Clin. Lab. Invest. 77(7), 535–540 (2017)

    Article  CAS  Google Scholar 

  22. K. Kamijo, K. Ishikawa, M. Tanaka, Clinical evaluation of 3rd generation assay for thyrotropin receptor antibodies: the M22-biotin-based ELISA initiated by Smith. Endocrine J. 52(5), 525–529 (2005)

    Article  CAS  Google Scholar 

  23. C. Massart, R. Sapin, J. Gibassier, A. Agin, M. d’Herbomez, Intermethod variability in TSH-receptor antibody measurement: implication for the diagnosis of Graves disease and for the follow-up of Graves ophthalmopathy. Clin. Chem. 55(1), 183–186 (2009)

    Article  CAS  Google Scholar 

  24. I.B. Pedersen, A. Handberg, N. Knudsen, L. Heickendorff, P. Laurberg, Assays for thyroid-stimulating hormone receptor antibodies employing different ligands and ligand partners may have similar sensitivity and specificity but are not interchangeable. Thyroid 20(2), 127–133 (2010)

    Article  CAS  Google Scholar 

  25. N.R. Syme, A.D. Toft, M. Stoddart, G.J. Beckett, Clinical performance of the Roche cobas e411 automated assay system for thyrotropin-receptor antibodies for the diagnosis of Graves’ disease. Annal. Clin. Biochemistry 48(Pt 5), 471–473 (2011)

    Article  CAS  Google Scholar 

  26. D. Villalta, F. D’Aurizio, M. Da Re, D. Ricci, F. Latrofa, R. Tozzoli, Diagnostic accuracy of a new fluoroenzyme immunoassay for the detection of TSH receptor autoantibodies in Graves’ disease. Autoimmun. Highlights 9(1), 3 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Siemens (China) Co., Ltd, for providing technical support.

Author contributions

XC, XL, and LQ designed the study. CM, XC, and LQ analyzed the data. XL and XC were responsible for patient enrollment QJ, HZ, ZD, ZZ, YH, AS, and GY contributed materials and analyte detection. CM and XC contributed manuscript writing. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Qiu or Xiaolan Lian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Xinqi Cheng, Xiaofeng Chai, Chaochao Ma, Qiang Jia, Honggang Zhao

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Chai, X., Ma, C. et al. Clinical diagnostic performance of a fully automated TSI immunoassay vs. that of an automated anti‑TSHR immunoassay for Graves’ disease: a Chinese multicenter study. Endocrine 71, 139–148 (2021). https://doi.org/10.1007/s12020-020-02386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02386-2

Keywords

Navigation