Skip to main content
Log in

Τriglycerides-glucose (TyG) index is a sensitive marker of insulin resistance in Greek children and adolescents

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To investigate the association between Triglyceride-glucose (TyG) index and the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Matsuda indices in Greek obese children and adolescents, in order to assess whether it could be used as a predictor of insulin resistance.

Methods

367 children (47.7% boys) with mean age of 9.9 ± 2.3 years, who were investigated for obesity, were included. After overnight fasting, TyG and HOMA-IR indices were calculated in all participants. In a subpopulation of 72 children Matsuda index was also calculated.

Results

48.8% and 36.1% of the participants had insulin resistance according to HOMA-IR and Matsuda index respectively. TyG was significantly and positively correlated with BMI, ΗΟΜΑ-IR, lipid profile and Matsuda index. ROC curve analysis for TyG showed that the optimal cutoff value for the prediction of insulin resistance (HOMA-IR) was 7.96 with sensitivity 65% and specificity 58%. The area under the curve (AUC) was 0.65 which significantly differs from 0.5 (p < 0.001). Similarly, the optimal cutoff value of TyG index for predicting insulin resistance as evidenced by Matsuda was 7.91 with sensitivity 85% and specificity 61%. The AUC was 0.75 (p < 0.001). The odds for insulin resistance (with HOMA-IR) was 2.54 times greater for subjects with TyG higher than 7.96, while the odds for insulin resistance (with Matsuda) was 8.56 times greater for subjects with TyG more than 7.91.

Conclusions

TyG index shows a positive correlation with insulin resistance among children and adolescents, however further studies are needed to clarify its predictive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BMI:

Body mass index

CHOL:

Cholesterol

FPG:

Fasting plasma glucose

FPI:

Fasting plasma insulin

HDL:

High density lipoprotein

HOMA-IR:

Homeostasis model assessment of insulin resistance

HEC:

Hyperinsulinemic euglycemic clamp

LDL:

Low density lipoprotein

OGTT:

Oral glucose tolerance test

ROC:

Receiver operating characteristic

T2DM:

Type 2 diabetes mellitus

Tg:

Triglycerides

TSH:

Thyroid stimulating hormone

TyG:

Triglyceride-glucose index

References

  1. G.B.D.O. Collaborators, A. Afshin, M.H. Forouzanfar, M.B. Reitsma, P. Sur, K. Estep, A. Lee, L. Marczak, A.H. Mokdad, M. Moradi-Lakeh, M. Naghavi, J.S. Salama, T. Vos, K.H. Abate, C. Abbafati, M.B. Ahmed, Z. Al-Aly, A. Alkerwi, R. Al-Raddadi, A.T. Amare, A. Amberbir, A.K. Amegah, E. Amini, S.M. Amrock, R.M. Anjana, J. Arnlov, H. Asayesh, A. Banerjee, A. Barac, E. Baye, D.A. Bennett, A.S. Beyene, S. Biadgilign, S. Biryukov, E. Bjertness, D.J. Boneya, I. Campos-Nonato, J.J. Carrero, P. Cecilio, K. Cercy, L.G. Ciobanu, L. Cornaby, S.A. Damtew, L. Dandona, R. Dandona, S.D. Dharmaratne, B.B. Duncan, B. Eshrati, A. Esteghamati, V.L. Feigin, J.C. Fernandes, T. Furst, T.T. Gebrehiwot, A. Gold, P.N. Gona, A. Goto, T.D. Habtewold, K.T. Hadush, N. Hafezi-Nejad, S.I. Hay, M. Horino, F. Islami, R. Kamal, A. Kasaeian, S.V. Katikireddi, A.P. Kengne, C.N. Kesavachandran, Y.S. Khader, Y.H. Khang, J. Khubchandani, D. Kim, Y.J. Kim, Y. Kinfu, S. Kosen, T. Ku, B.K. Defo, G.A. Kumar, H.J. Larson, M. Leinsalu, X. Liang, S.S. Lim, P. Liu, A.D. Lopez, R. Lozano, A. Majeed, R. Malekzadeh, D.C. Malta, M. Mazidi, C. McAlinden, S.T. McGarvey, D.T. Mengistu, G.A. Mensah, G.B.M. Mensink, H.B. Mezgebe, E.M. Mirrakhimov, U.O. Mueller, J.J. Noubiap, C.M. Obermeyer, F.A. Ogbo, M.O. Owolabi, G.C. Patton, F. Pourmalek, M. Qorbani, A. Rafay, R.K. Rai, C.L. Ranabhat, N. Reinig, S. Safiri, J.A. Salomon, J.R. Sanabria, I.S. Santos, B. Sartorius, M. Sawhney, J. Schmidhuber, A.E. Schutte, M.I. Schmidt, S.G. Sepanlou, M. Shamsizadeh, S. Sheikhbahaei, M.J. Shin, R. Shiri, I. Shiue, H.S. Roba, D.A.S. Silva, J.I. Silverberg, J.A. Singh, S. Stranges, S. Swaminathan, R. Tabares-Seisdedos, F. Tadese, B.A. Tedla, B.S. Tegegne, A.S. Terkawi, J.S. Thakur, M. Tonelli, R. Topor-Madry, S. Tyrovolas, K.N. Ukwaja, O.A. Uthman, M. Vaezghasemi, T. Vasankari, V.V. Vlassov, S.E. Vollset, E. Weiderpass, A. Werdecker, J. Wesana, R. Westerman, Y. Yano, N. Yonemoto, G. Yonga, Z. Zaidi, Z.M. Zenebe, B. Zipkin, C.J.L. Murray, Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377(1), 13–27 (2017). https://doi.org/10.1056/NEJMoa1614362

    Article  Google Scholar 

  2. J.P. Despres, I. Lemieux, Abdominal obesity and metabolic syndrome. Nature 444(7121), 881–887 (2006). https://doi.org/10.1038/nature05488

    Article  CAS  PubMed  Google Scholar 

  3. S.H. Lee, H.S. Ha, Y.J. Park, J.H. Lee, H.W. Yim, K.H. Yoon, M.I. Kang, W.C. Lee, H.Y. Son, Y.M. Park, H.S. Kwon, Identifying metabolically obese but normal-weight (MONW) individuals in a nondiabetic Korean population: the Chungju Metabolic disease Cohort (CMC) study. Clin. Endocrinol. 75(4), 475–481 (2011). https://doi.org/10.1111/j.1365-2265.2011.04085.x

    Article  Google Scholar 

  4. R. Kelishadi, S.R. Cook, M.E. Motlagh, M.M. Gouya, G. Ardalan, M. Motaghian, R. Majdzadeh, M.A. Ramezani, Metabolically obese normal weight and phenotypically obese metabolically normal youths: the CASPIAN study. J. Am. Diet Assoc. 108(1), 82–90 (2008). https://doi.org/10.1016/j.jada.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  5. L.E. Simental-Mendia, M. Rodriguez-Moran, F. Guerrero-Romero, The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6(4), 299–304 (2008). https://doi.org/10.1089/met.2008.0034

    Article  CAS  PubMed  Google Scholar 

  6. F. Guerrero-Romero, L.E. Simental-Mendia, M. Gonzalez-Ortiz, E. Martinez-Abundis, M.G. Ramos-Zavala, S.O. Hernandez-Gonzalez, O. Jacques-Camarena, M. Rodriguez-Moran, The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 95(7), 3347–3351 (2010). https://doi.org/10.1210/jc.2010-0288

    Article  CAS  PubMed  Google Scholar 

  7. T. Du, G. Yuan, M. Zhang, X. Zhou, X. Sun, X. Yu, Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc. Diabetol. 13, 146 (2014). https://doi.org/10.1186/s12933-014-0146-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.C. Espinel-Bermudez, J.A. Robles-Cervantes, L. del Sagrario Villarreal-Hernandez, J.P. Villasenor-Romero, S.O. Hernandez-Gonzalez, M. Gonzalez-Ortiz, E. Martinez-Abundis, K.G. Perez-Rubio, Insulin resistance in adult primary care patients with a surrogate index, Guadalajara, Mexico, 2012. J. Investig. Med. 63(2), 247–250 (2015). https://doi.org/10.1097/JIM.0000000000000130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S.H. Lee, K. Han, H.K. Yang, M.K. Kim, K.H. Yoon, H.S. Kwon, Y.M. Park, Identifying subgroups of obesity using the product of triglycerides and glucose: the Korea National Health and Nutrition Examination Survey, 2008-2010. Clin. Endocrinol. 82(2), 213–220 (2015). https://doi.org/10.1111/cen.12502

    Article  CAS  Google Scholar 

  10. N.S. Mohd Nor, S. Lee, F. Bacha, H. Tfayli, S. Arslanian, Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic–euglycemic clamp. Pediatr. Diabetes 17(6), 458–465 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. C. Irace, C. Carallo, F.B. Scavelli, M.S. De Franceschi, T. Esposito, C. Tripolino, A. Gnasso, Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int. J. Clin. Pract. 67(7), 665–672 (2013). https://doi.org/10.1111/ijcp.12124

    Article  CAS  PubMed  Google Scholar 

  12. S.-H. Lee, H.-S. Kwon, Y.-M. Park, H.-S. Ha, S.H. Jeong, H.K. Yang, J.-H. Lee, H.-W. Yim, M.-I. Kang, W.-C. Lee, Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE 9(2), e90430 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  13. L.E. Simental-Mendia, G. Hernandez-Ronquillo, R. Gomez-Diaz, M. Rodriguez-Moran, F. Guerrero-Romero, The triglycerides and glucose index is associated with cardiovascular risk factors in normal-weight children and adolescents. Pediatr. Res. 82(6), 920–925 (2017). https://doi.org/10.1038/pr.2017.187

    Article  CAS  PubMed  Google Scholar 

  14. D.M. Styne, S.A. Arslanian, E.L. Connor, I.S. Farooqi, M.H. Murad, J.H. Silverstein, J.A. Yanovski, Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 102(3), 709–757 (2017). https://doi.org/10.1210/jc.2016-2573

    Article  PubMed  PubMed Central  Google Scholar 

  15. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7), 412–419 (1985). https://doi.org/10.1007/bf00280883

    Article  CAS  PubMed  Google Scholar 

  16. B. Tresaco, G. Bueno, I. Pineda, L.A. Moreno, J.M. Garagorri, M. Bueno, Homeostatic model assessment (HOMA) index cutoff values to identify the metabolic syndrome in children. J. Physiol. Biochem. 61(2), 381–388 (2005). https://doi.org/10.1007/bf03167055

    Article  CAS  PubMed  Google Scholar 

  17. M. Kostovski, V. Simeonovski, K. Mironska, V. Tasic, Z. Gucev, . Open Access Maced J. Med. Sci. 6(3), 511–518 (2018). https://doi.org/10.3889/oamjms.2018.097

    Article  PubMed  PubMed Central  Google Scholar 

  18. E.J. Mayer-Davis, A.R. Kahkoska, C. Jefferies, D. Dabelea, N. Balde, C.X. Gong, P. Aschner, M.E. Craig, ISPAD Clinical Practice Consensus Guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 19(Suppl 27), 7–19 (2018). https://doi.org/10.1111/pedi.12773

    Article  PubMed  PubMed Central  Google Scholar 

  19. M. Matsuda, R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9), 1462–1470 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. A. Borai, C. Livingstone, I. Kaddam, G. Ferns, Selection of the appropriate method for the assessment of insulin resistance. BMC Med. Res. Methodol. 11(1), 158 (2011). https://doi.org/10.1186/1471-2288-11-158

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. Moon, J.S. Park, Y. Ahn, The cutoff values of triglycerides and glucose index for metabolic syndrome in American and Korean adolescents. J. Korean Med. Sci. 32(3), 427–433 (2017). https://doi.org/10.3346/jkms.2017.32.3.427

    Article  PubMed  Google Scholar 

  22. V. Calcaterra, C. Montalbano, A. de Silvestri, G. Pelizzo, C. Regalbuto, V. Paganelli, R. Albertini, F. D. Cave, D. Larizza, H. Cena, Triglyceride glucose index as a surrogate measure of insulin sensitivity in a caucasian pediatric population. J. Clin. Res. Pediatr. Endocrinol. (2019). https://doi.org/10.4274/jcrpe.galenos.2019.2019.0024

  23. S.A. Vieira-Ribeiro, P.C.A. Fonseca, C.S. Andreoli, A.Q. Ribeiro, H.H.M. Hermsdorff, P.F. Pereira, S.E. Priore, S.C.C. Franceschini, The TyG index cutoff point and its association with body adiposity and lifestyle in children. J. Pediatr. 95(2), 217–223 (2019). https://doi.org/10.1016/j.jped.2017.12.012

    Article  Google Scholar 

  24. J.C. Locateli, W.A. Lopes, C.F. Simoes, G.H. de Oliveira, K. Oltramari, R.H. Bim, V.H. de Souza Mendes, J.M. Remor, C.A. Lopera, N. Nardo Junior, Triglyceride/glucose index is a reliable alternative marker for insulin resistance in South American overweight and obese children and adolescents. J. Pediatr. Endocrinol. Metab. 32(10), 1163–1170 (2019). https://doi.org/10.1515/jpem-2019-0037

    Article  CAS  PubMed  Google Scholar 

  25. G.S. Berenson, S.R. Srinivasan, W. Bao, W.P. Newman, R.E. Tracy, W.A. Wattigney, Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N. Engl. J. Med. 338(23), 1650–1656 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Department of Endocrinology, Growth and Development, “P. & A. Kyriakou” Children’s Hospital, Athens, Greece; Division of Endocrinology and Diabetes, “Aghia Sophia” Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; and Department of Biochemistry, P. & A. Kyriakou” Children’s Hospital, Athens, Greece are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elpis Athina Vlachopapadopoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikaiakou, E., Vlachopapadopoulou, E.A., Paschou, S.A. et al. Τriglycerides-glucose (TyG) index is a sensitive marker of insulin resistance in Greek children and adolescents. Endocrine 70, 58–64 (2020). https://doi.org/10.1007/s12020-020-02374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02374-6

Keywords

Navigation