Skip to main content

Advertisement

Log in

Selenium exerts protective effects against oxidative stress and cell damage in human thyrocytes and fibroblasts

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Selenium, incorporated into specific seleno-enzymes, is essential to proper thyroid function and protect cells from oxidative damage induced by H2O2 during thyroid hormone synthesis. Several studies indicated that low selenium levels are associated with thyroid autoimmunity and related disorders, but real effectiveness of selenium supplementation in such diseases is still controversial. We evaluated the effect of selenium on oxidative damage in human thyrocytes and thyroid fibroblasts in vitro.

Methods

To induce oxidative stress, primary cultures were exposed to H2O2, in the presence or the absence of selenium, as either selenomethionine or selenite. We performed the following assays: cell viability, caspase-3 activity, BCL-2/BAX gene expression, DNA fragmentation, malondialdehyde levels, and glutathione peroxidase (GPx) activity measurements.

Results

Thyrocytes and thyroid fibroblasts exposed to H2O2 and preincubated with both selenocompounds displayed a significant dose-dependent increase in cell viability compared to cells incubated with H2O2 alone. Pretreatment with selenomethionine and selenite significantly reduced caspase-3 activity and BAX mRNA levels and increased BCL-2 mRNA levels in a dose-dependent manner. Accordingly, H2O2 induced a diffuse pattern of DNA degradation and an increase in malondialdehyde levels, which was prevented by the pretreatment with both selenomethionine and selenite. Both selenocompounds induced an increase in GPx activity, suggesting that these protective effects may be, almost in part, mediated by these selenoproteins.

Conclusion

In human thyrocytes and fibroblasts in vitro, selenium exerts protective effects against H2O2 in a dose-dependent manner, being selenite effective at lower doses than selenomethionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.P. Rayman, Selenium and human health. Lancet 379, 1256–1268 (2012)

    CAS  Google Scholar 

  2. Z. Huang, A.H. Rose, P.R. Hoffmann, The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 16, 705–743 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. J.C. Avery, P.R. Hoffmann, Selenium, selenoproteins, and immunity. Nutrients 10, E1203 (2018)

    PubMed  Google Scholar 

  4. J. Köhrle, Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 22, 392–401 (2015)

    PubMed  Google Scholar 

  5. G. Di Dalmazi, J. Hirshberg, D. Lyle, J.B. Freij, P. Caturegli, Reactive oxygen species in organ-specific autoimmunity. Auto. Immun. Highlights 7, 11 (2016)

    PubMed  PubMed Central  Google Scholar 

  6. C.L. Burek, N.R. Rose, Autoimmune thyroiditis and ROS. Autoimmun. Rev. 7, 530–537 (2008)

    CAS  PubMed  Google Scholar 

  7. C.L. Burek, M.V. Talor, Environmental triggers of autoimmune thyroiditis. J. Autoimmun. 33, 183–189 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Sharma, K. Traore, M.A. Trush, N.R. Rose, C. Burek, Intracellular adhesion molecule-1 up-regulation on thyrocytes by iodine of non-obese diabetic. H2(h4) mice is reactive oxygen species-dependent. Clin. Exp. Immunol. 152, 13–20 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Zarkovi, The role of oxidative stress on the pathogenesis of graves’ disease. J. Thyroid. Res. 2012, 302537 (2012)

    Google Scholar 

  10. G. Effraimidis, W.M. Wiersinga, Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur. J. Endocrinol. 170, 241–252 (2014)

    Google Scholar 

  11. I. Ates, F.M. Yilmaz, M. Altay, N. Yilmaz, D. Berker, S. Güler, The relationship between oxidative stress and autoimmunity in Hashimoto’s thyroiditis. Eur. J. Endocrinol. 173, 791–799 (2015)

    CAS  PubMed  Google Scholar 

  12. R.M. Ruggeri, T.M. Vicchio, M. Cristani, R. Certo, D. Caccamo, A. Alibrandi, S. Giovinazzo, A. Saija, A. Campennì, F. Trimarchi, S. Gangemi, Oxidative stress and advanced glycation end products in Hashimoto’s thyroiditis. Thyroid 26, 504–511 (2016)

    CAS  PubMed  Google Scholar 

  13. R.M. Ruggeri, M. Cristani, T.M. Vicchio, A. Alibrandi, S. Giovinazzo, A. Saija, A. Campennì, F. Trimarchi, S. Gangemi, Increased serum interleukin-37 (IL-37) levels correlate with oxidative stress parameters in Hashimoto’s thyroiditis. J. Endocrinol. Investig. 2, 199–205 (2018)

    Google Scholar 

  14. M. Kucharzewski, J. Braziewicz, U. Majewska, S. Góźdź, Concentration of selenium in the whole blood and the thyroid tissue of patients with various thyroid diseases. Biol. Trace Elem. Res. 88, 25–30 (2002)

    CAS  PubMed  Google Scholar 

  15. H. Derumeaux, P. Valeix, K. Castetbon, M. Bensimon, M.C. Boutron-Ruault, J. Arnaud, S. Hercberg, Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur. J. Endocrinol. 148, 309–315 (2003)

    CAS  PubMed  Google Scholar 

  16. T. Wertenbruch, H.S. Willenberg, C. Sagert, T.B. Nguyen, M. Bahlo, J. Feldkamp, C. Groeger, D. Hermsen, W.A. Scherbaum, M. Schott, Serum selenium levels in patients with remission and relapse of Graves' disease. J. Med. Chem. 3, 281–284 (2007)

    CAS  Google Scholar 

  17. L.B. Rasmussen, L. Schomburg, J. Köhrle, I.B. Pedersen, B. Hollenbach, A. Hög, L. Ovesen, H. Perrild, P. Laurberg, Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur. J. Endocrinol. 164, 585–590 (2011)

    CAS  PubMed  Google Scholar 

  18. Q. Wu, M.P. Rayman, H. Lv, L. Schomburg, B. Cui, C. Gao, P. Chen, G. Zhuang, Z. Zhang, X. Peng, H. Li, Y. Zhao, X. He, G. Zeng, F. Qin, P. Hou, B. Shi, Low population selenium status is associated with increased prevalence of thyroid disease. J. Clin. Endocrinol. Metab. 100, 4037–4047 (2015)

    CAS  PubMed  Google Scholar 

  19. Y. Liu, S. Liu, J. Mao, S. Piao, J. Qin, S. Peng, X. Xie, H. Guan, Y. Li, Z. Shan, W. Teng, Serum trace elements profile in graves’ disease patients with or without orbitopathy in Northeast China. Biomed. Res. Int. 2018, 3029379 (2018)

    PubMed  PubMed Central  Google Scholar 

  20. L.H. Duntas, The role of iodine and selenium in autoimmune thyroiditis. Horm. Metab. Res. 47, 721–726 (2015)

    CAS  PubMed  Google Scholar 

  21. S. Hu, M.P. Rayman, Multiple nutritional factors and the risk of Hashimoto's thyroiditis. Thyroid 27, 597–610 (2017)

    CAS  PubMed  Google Scholar 

  22. M.P. Rayman, Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc. Nutr. Soc. 78, 34–44 (2019)

    CAS  PubMed  Google Scholar 

  23. A. Drutel, F. Archambeaud, P. Caron, Selenium and the thyroid gland: more good news for clinicians. Clin. Endocrinol. 78, 155–164 (2013)

    CAS  Google Scholar 

  24. F. Karimi, G.R. Omrani, Effects of selenium and vitamin C on the serum level of antithyroid peroxidase antibody in patients with autoimmune thyroiditis. J. Endocrinol. Investig. 4, 481–487 (2018)

    Google Scholar 

  25. J. Wichman, K.H. Winther, S.J. Bonnema, L. Hegedus, Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid 26, 1681–1692 (2016)

    CAS  PubMed  Google Scholar 

  26. K.H. Winther, J.E. Wichman, S.J. Bonnema, L. Hegedous, Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine 55, 376–385 (2017)

    CAS  PubMed  Google Scholar 

  27. G. Rotondo Dottore, M. Leo, G. Casini, F. Latrofa, L. Cestari, S. Sellari-Franceschini, M. Nardi, P. Vitti, C. Marcocci, M. Marinò, Antioxidant actions of selenium in orbital fibroblasts: a basis for the effects of selenium in Graves’ orbitopathy. Thyroid 27, 271–278 (2017)

    CAS  PubMed  Google Scholar 

  28. G. Rotondo Dottore, I. Ionni, F. Menconi, G. Casini, S. Sellari-Franceschini, M. Nardi, P. Vitti, C. Marcocci, M. Marinò, Antioxidant effects of β-carotene, but not of retinol and vitamin E, in orbital fibroblasts from patients with Graves’ orbitopathy (GO). J. Endocrinol. Investig. 41, 815–820 (2018)

    CAS  Google Scholar 

  29. G. Rotondo Dottore, I. Ionni, F. Menconi, G. Casini, S. Sellari-Franceschini, M. Nardi, P. Vitti, C. Marcocci, M. Marinò, Action of three bioavailable antioxidants in orbital fibroblasts from patients with Graves’ orbitopathy (GO): a new frontier for GO treatment? J. Endocrinol. Investig. 41, 193–201 (2018)

    CAS  Google Scholar 

  30. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248–254 (1976)

    Google Scholar 

  31. Y. Saito, K. Nishio, Y. Ogawa, J. Kimata, T. Kinumi, Y. Yoshida, N. Noguchi, E. Niki, Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free. Radic. Res. 40, 619–630 (2006)

    CAS  PubMed  Google Scholar 

  32. Y. Song, N. Driessens, M. Costa, X. De Deken, V. Detours, B. Corvilain, C. Maenhaut, F. Miot, J. Van Sande, M.C. Many, J.E. Dumont, Roles of hydrogen peroxide in thyroid physiology and disease. J. Clin. Endocrinol. Metab. 92, 3764–3773 (2007)

    CAS  PubMed  Google Scholar 

  33. C. Ghaddhab, A. Kyrilli, N. Driessens, E. Van Den Eeckhaute, O. Hancisse, X. De Deken, J.E. Dumont, V. Detours, F. Miot, B. Corvilain, Factors contributing to the resistance of the thyrocyte to hydrogen peroxide. Mol. Cell. Endocrinol. 481, 62–70 (2019)

    CAS  PubMed  Google Scholar 

  34. B. Contempre, O. Le Moine, J.E. Dumont, J.F. Denef, M.C. Many, Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta). Mol. Cell. Endocrinol. 124, 7–15 (1996)

    CAS  PubMed  Google Scholar 

  35. H. Xue, W. Wang, Y. Li, Z. Shan, Y. Li, X. Teng, Y. Gao, C. Fan, W. Teng, Selenium upregulates CD4(+) CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr. J. 57, 595–601 (2010)

    CAS  PubMed  Google Scholar 

  36. W. Wang, H. Xue, Y. Li, X. Hou, C. Fan, H. Wang, H. Zhang, Z. Shan, W. Teng, Effects of selenium supplementation on spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. Thyroid 25, 1137–1144 (2015)

    CAS  PubMed  Google Scholar 

  37. A. Demelash, J.O. Karlsson, M. Nilsson, U. Bjorkman, Selenium has a protective role in caspase-3-dependent apoptosis induced by H2O2 in primary cultured pig thyrocytes. Eur. J. Endocrinol. 150, 841–849 (2004)

    CAS  PubMed  Google Scholar 

  38. P. Lehmann, P. Rank, K.L. Hallfeldt, B. Krebs, R. Gärtner, Dose-related influence of Na2SO3 on apoptosis in human thyroid follicles in vitro induced by iodine, EGF, TGF-beta, and H2O2. Biol. Trace Elem. Res. 112, 119–130 (2006)

    CAS  PubMed  Google Scholar 

  39. L. Tan, W. Sun, Z.N. Sang, W.Q. Zhang, The effect of selenium on the expression of Fas/FasL in experimental autoimmune thyroiditis rats’ thyroid with adequate iodine. Zhonghua. Yu. Fang. Yi. Xue. Za. Zhi. 42, 640–643 (2008)

    CAS  PubMed  Google Scholar 

  40. I. Nettore, E. De Nisco, S. Desiderio, C. Passaro, L. Maione, M. Negri, L. Albano, R. Pivonello, C. Pivonello, G. Portella, P. Ungaro, A. Colao, P.E. Macchia, Selenium supplementation modulates apoptotic processes in thyroid follicular cells. Biofactors 43, 415–423 (2017)

    CAS  PubMed  Google Scholar 

  41. J. Chiu-Ugalde, E.K. Wirth, M.O. Klein, R. Sapin, N. Fradejas-Villar, K. Renko, L. Schomburg, J. Köhrle, U. Schweizer, Thyroid function is maintained despite increased oxidative stress in mice lacking selenoprotein biosynthesis in thyroid epithelial cells. Antioxid. Redox Signal. 6, 902–913 (2012)

    Google Scholar 

  42. C. Di Dato, D. Gianfrilli, E. Greco, M. Astolfi, S. Canepari, A. Lenzi, A.M. Isidori, E. Giannetta, Profiling of selenium absorption and accumulation in healthy subjects after prolonged L-selenomethionine supplementation. J. Endocrinol. Investig. 40, 1183–1190 (2017)

    Google Scholar 

  43. G. Mantovani, A.M. Isidori, C. Moretti, C. Di Dato, E. Greco, P. Ciolli., M. Bonomi, L. Petrone, A. Fumarola, G. Campagna, G. Vannucchi, S. Di Sante, C. Pozza, A. Faggiano, A. Lenzi, E. Giannetta, Selenium supplementation in the management of thyroid autoimmunity during pregnancy: results of the “SERENA study”, a randomized, double-blind, placebo-controlled trial. Endocrine (2019). https://doi.org/10.1007/s12020-019-01958-1

  44. R.F. Burk, B.K. Norsworthy, K.E. Hill, A.K. Motley, D.W. Byrne, Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomark. Prev. 15, 804–810 (2006)

    CAS  Google Scholar 

  45. C.D. Thomson, C.E. Burton, M.F. Robinson, On supplementing the selenium intake of New Zealanders. 1. Short experiments with large doses of selenite or selenomethionine. Br. J. Nutr. 39, 579–587 (1978)

    CAS  PubMed  Google Scholar 

  46. S.J. Fairweather-Tait, R. Collings, R. Hurst, Selenium bioavailability: current knowledge and future research requirements. Am. J. Clin. Nutr. 91, 1484–1491 (2010)

    Google Scholar 

  47. M. Roman, P. Jitaru, C. Barbante, Selenium biochemistry and its role for human health. Metallomics 6, 25–54 (2014)

    CAS  PubMed  Google Scholar 

  48. R. Robinson, M.E. Robinson, O.A. Levander, C.D. Thomson, Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes. Am. J. Clin. Nutr. 41, 1023–1031 (1985)

    CAS  PubMed  Google Scholar 

  49. G. Alfthan, A. Aro, H. Arvilommi, J.K. Huttunen, Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: effects of selenium yeast, selenite, and selenate. Am. J. Clin. Nutr. 53, 120–125 (1991)

    CAS  PubMed  Google Scholar 

Download references

Author contribution

Each author gave a substantial contribute to the paper and approved the final version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaria M. Ruggeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

was obtained from patients. The study was approved by the local Ethical Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, R.M., D’Ascola, A., Vicchio, T.M. et al. Selenium exerts protective effects against oxidative stress and cell damage in human thyrocytes and fibroblasts. Endocrine 68, 151–162 (2020). https://doi.org/10.1007/s12020-019-02171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02171-w

Keywords

Navigation