Skip to main content
Log in

Effect of Nigella Sativa oil versus metformin on glycemic control and biochemical parameters of newly diagnosed type 2 diabetes mellitus patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Nature is a phenomenal treasure of remedies. Numerous previous studies reported that Nigella sativa NS improved glycemic control, reduced insulin resistance, and improved lipid profile. NS was never investigated before as a monotherapy for newly diagnosed type 2 diabetes mellitus T2DM patients. Our aim was to investigate the potential metabolic benefits of NS monotherapy in newly diagnosed T2DM patients.

Method

Prospective, open-label randomized clinical trial at outpatient endocrinology clinic at Ain-Shams University hospital. Eligible patients were randomly assigned to either metformin tablets or NS oil capsules. Both groups received treatment for 3 months. Glycemic index (FBG, 2 h pp, A1C, insulin sensitivity %S, secretory function %B, insulin resistance IR), lipid profile (TC, LDL, HDL, TG), liver and kidney functions (AST, ALT, Sr cr), total antioxidant capacity TAC, weight, waist circumference WC and body mass index BMI were assessed at baseline and at the end of treatment period.

Results

A concentration of 1350 mg/day NS in newly diagnosed T2DM patients was inferior to metformin in terms of lowering FBG, 2 h pp, and A1C or increasing %B. However, NS was comparable to metformin in lowering weight, WC, and BMI significantly. NS was comparable to metformin in regards of their effects on fasting insulin, %S, IR, ALT, TC, LDL, HDL, TG, and TAC. Metformin showed significant increase in AST and creatinine which was reserved in NS group.

Conclusion

NS administration in newly diagnosed T2DM was tolerable with no side effects as compared to metformin; however, it was inferior to metformin in terms of diabetes management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.C. Ziemer, P. Kolm, W.S. Weintraub, V. Vaccarino, M.K. Rhee, J.G. Twombly, K.M. Narayan, D.D. Koch, L.S. Phillips, Glucose-independent, black-white differences in hemoglobin A1c levels: a cross-sectional analysis of 2 studies. Ann. Intern. Med. 152(12), 770–777 (2010). https://doi.org/10.7326/0003-4819-152-12-201006150-00004

    Article  PubMed  Google Scholar 

  2. M. Janghorbani, M.R. Salamat, M. Amini, A. Aminorroaya, Risk of diabetes according to the metabolic health status and degree of obesity. Diabetes Metab. Syndr. 11(Suppl 1), S439–S444 (2017). https://doi.org/10.1016/j.dsx.2017.03.032

    Article  PubMed  Google Scholar 

  3. X. Li, K. Watanabe, I. Kimura, Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front. Immunol. 8, 1882 (2017). https://doi.org/10.3389/fimmu.2017.01882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.J. Berridge, Vitamin D deficiency and diabetes. Biochem. J. 474(8), 1321–1332 (2017). https://doi.org/10.1042/BCJ20170042

    Article  CAS  PubMed  Google Scholar 

  5. A. Cheema, D. Adeloye, S. Sidhu, D. Sridhar, K.Y. Chan, Urbanization and prevalence of type 2 diabetes in Southern Asia. A systematic analysis. J. Glob. Health 4(1), 010404 (2014). https://doi.org/10.7189/jogh.04.010404

    Article  PubMed  PubMed Central  Google Scholar 

  6. J.D. Schofield, Y. Liu, P. Rao-Balakrishna, R.A. Malik, H. Soran, Diabetes dyslipidemia. diabetes Ther. 7(2), 203–219 (2016). https://doi.org/10.1007/s13300-016-0167-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T.V. Fiorentino, A. Prioletta, P. Zuo, F. Folli, Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 19(32), 5695–5703 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. U. Asmat, K. Abad, K. Ismail, Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J. 24(5), 547–553 (2016). https://doi.org/10.1016/j.jsps.2015.03.013

    Article  PubMed  Google Scholar 

  9. M.S. Kirkman, M.T. Rowan-Martin, R. Levin, V.A. Fonseca, J.A. Schmittdiel, W.H. Herman, R.E. Aubert, Determinants of adherence to diabetes medications: findings from a large pharmacy claims database. Diabetes Care 38(4), 604–609 (2015). https://doi.org/10.2337/dc14-2098

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hemmingsen, B., Lund, S. S., Gluud, C., Vaag, A., Almdal, T. P., Hemmingsen, C., Wetterslev, J. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst. Rev. CD008143 (2013). https://doi.org/10.1002/14651858.CD008143.pub3

  11. American Diabetes, A., 8. pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1), S73–S85 (2018). https://doi.org/10.2337/dc18-S008

    Article  Google Scholar 

  12. M.F. Kadir, M.S. Bin Sayeed, T. Shams, M.M. Mia, Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J. Ethnopharmacol. 144(3), 605–611 (2012). https://doi.org/10.1016/j.jep.2012.09.050

    Article  PubMed  Google Scholar 

  13. W. Qidwai, H.B. Hamza, R. Qureshi, A. Gilani, Effectiveness, safety, and tolerability of powdered Nigella sativa (kalonji) seed in capsules on serum lipid levels, blood sugar, blood pressure, and body weight in adults: results of a randomized, double-blind controlled trial. J. Altern. Complement. Med. 15(6), 639–644 (2009). https://doi.org/10.1089/acm.2008.0367

    Article  PubMed  Google Scholar 

  14. J. Heshmati, N. Namazi, Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: a systematic review. Complement. Ther. Med. 23(2), 275–282 (2015). https://doi.org/10.1016/j.ctim.2015.01.013

    Article  PubMed  Google Scholar 

  15. A. Bamosa, H. Kaatabi, A. Badar, A. Al-Khadra, A. Al Elq, B. Abou-Hozaifa, F. Lebda, S. Al-Almaie, Nigella sativa: A potential natural protective agent against cardiac dysfunction in patients with type 2 diabetes mellitus. J. Fam. Community Med. 22(2), 88–95 (2015). https://doi.org/10.4103/2230-8229.155380

    Article  Google Scholar 

  16. E. Farzaneh, F.R. Nia, M. Mehrtash, F.S. Mirmoeini, M. Jalilvand, The effects of 8-week nigella sativa supplementation and aerobic training on lipid profile and VO2 max in sedentary overweight females. Int. J. Prev. Med. 5(2), 210–216 (2014)

    PubMed  PubMed Central  Google Scholar 

  17. J. Javanbakht, R. Hobbenaghi, E. Hosseini, A.M. Bahrami, F. Khadivar, S. Fathi, M.A. Hassan, Histopathological investigation of neuroprotective effects of Nigella sativa on motor neurons anterior horn spinal cord after sciatic nerve crush in rats. Pathol.-Biol. 61(6), 250–253 (2013). https://doi.org/10.1016/j.patbio.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  18. A.A. Sayed, Thymoquinone and proanthocyanidin attenuation of diabetic nephropathy in rats. Eur. Rev. Med. Pharmacol. Sci. 16(6), 808–815 (2012)

    CAS  PubMed  Google Scholar 

  19. A. Benhaddou-Andaloussi, L. Martineau, T. Vuong, B. Meddah, P. Madiraju, A. Settaf, P.S. Haddad, The in vivo antidiabetic activity of nigella sativa is mediated through activation of the ampk pathway and increased muscle Glut4 content. Evid.Based Complement. Altern. Med. 2011, 538671 (2011). https://doi.org/10.1155/2011/538671

    Article  Google Scholar 

  20. N. Houstis, E.D. Rosen, E.S. Lander, Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086), 944–948 (2006). https://doi.org/10.1038/nature04634

    Article  CAS  PubMed  Google Scholar 

  21. B. Meddah, R. Ducroc, M. El Abbes Faouzi, B. Eto, L. Mahraoui, A. Benhaddou-Andaloussi, L.C. Martineau, Y. Cherrah, P.S: Haddad, Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J. Ethnopharmacol. 121(3), 419–424 (2009). https://doi.org/10.1016/j.jep.2008.10.040

    Article  PubMed  Google Scholar 

  22. W. Sobhi, C. Stevigny, P. Duez, B.B. Calderon, D. Atmani, M. Benboubetra, Effect of lipid extracts of Nigella sativa L. seeds on the liver ATP reduction and alpha-glucosidase inhibition. Pak. J. Pharm. Sci. 29(1), 111–117 (2016)

    CAS  PubMed  Google Scholar 

  23. S. Alimohammadi, R. Hobbenaghi, J. Javanbakht, D. Kheradmand, R. Mortezaee, M. Tavakoli, F. Khadivar, H. Akbari, Protective and antidiabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: an experimental study with histopathological evaluation. Diagn. Pathol. 8, 137 (2013). https://doi.org/10.1186/1746-1596-8-137

    Article  PubMed  PubMed Central  Google Scholar 

  24. A.O. Bamosa, H. Kaatabi, F.M. Lebdaa, A.M. Elq, A. Al-Sultanb, Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J. Physiol. Pharmacol. 54(4), 344–354 (2010)

    PubMed  Google Scholar 

  25. A. Benhaddou-Andaloussi, L.C. Martineau, D. Vallerand, Y. Haddad, A. Afshar, A. Settaf, P.S. Haddad, Multiple molecular targets underlie the antidiabetic effect of Nigella sativa seed extract in skeletal muscle, adipocyte and liver cells. Diabetes, Obes. Metab. 12(2), 148–157 (2010). https://doi.org/10.1111/j.1463-1326.2009.01131.x

    Article  CAS  Google Scholar 

  26. K.M. Fararh, Y. Atoji, Y. Shimizu, T. Shiina, H. Nikami, T. Takewaki, Mechanisms of the hypoglycaemic and immunopotentiating effects of Nigella sativa L. oil in streptozotocin-induced diabetic hamsters. Res. Vet. Sci. 77(2), 123–129 (2004). https://doi.org/10.1016/j.rvsc.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  27. E.A. Datau, Wardhana, E.E. Surachmanto, K. Pandelaki, J.A. Langi, Fias: Efficacy of Nigella sativa on serum free testosterone and metabolic disturbances in central obese male. Acta Med. Indones. 42(3), 130–134 (2010)

    CAS  PubMed  Google Scholar 

  28. M. Tauseef Sultan, M.S. Butt, F.M. Anjum, Safety assessment of black cumin fixed and essential oil in normal Sprague Dawley rats: Serological and hematological indices. Food Chem. Toxicol. 47(11), 2768–2775 (2009). https://doi.org/10.1016/j.fct.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  29. H. Kaatabi, A.O. Bamosa, A. Badar, A. Al-Elq, B. Abou-Hozaifa, F. Lebda, A. Al-Khadra, S. Al-Almaie, Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: placebo controlled participant blinded clinical trial. PLoS ONE 10(2), e0113486 (2015). https://doi.org/10.1371/journal.pone.0113486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. American Diabetes, A., (2) Classification and diagnosis of diabetes. Diabetes Care 38(Suppl), S8–S16 (2015). https://doi.org/10.2337/dc15-S005

    Article  Google Scholar 

  31. Network, S.P. Research randomizer. (2015). https://www.randomizer.org/about/. Accessed 03 Feb 2016

  32. unit, U.o.O.D.t. HOMA2 calculator. (2014). http://www.dtu.ox.ac.uk/homacalculator/download.php. Accessed 03 Feb 2016

  33. P. Gayoso-Diz, A. Otero-Gonzalez, M.X. Rodriguez-Alvarez, F. Gude, F. Garcia, A. De Francisco, A.G. Quintela, Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 13, 47 (2013). https://doi.org/10.1186/1472-6823-13-47

    Article  PubMed  PubMed Central  Google Scholar 

  34. L. Guariguata, D. Whiting, C. Weil, N. Unwin, The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res. Clin. Pract. 94(3), 322–332 (2011). https://doi.org/10.1016/j.diabres.2011.10.040

    Article  PubMed  Google Scholar 

  35. D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75(3), 311–335 (2012). https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Hasani-Ranjbar, Z. Jouyandeh, M. Abdollahi, A systematic review of anti-obesity medicinal plants - an update. J. Diabetes Metab. Disord. 12(1), 28 (2013). https://doi.org/10.1186/2251-6581-12-28

    Article  PubMed  PubMed Central  Google Scholar 

  37. F. Amin, N. Islam, N. Anila, A.H. Gilani, Clinical efficacy of the co-administration of Turmeric and Black seeds (Kalongi) in metabolic syndrome - a double blind randomized controlled trial - TAK-MetS trial. Complement. Ther. Med. 23(2), 165–174 (2015). https://doi.org/10.1016/j.ctim.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  38. M.A. Farhangi, P. Dehghan, S. Tajmiri, Powdered black cumin seeds strongly improves serum lipids, atherogenic index of plasma and modulates anthropometric features in patients with Hashimoto’s thyroiditis. Lipids Health Dis. 17(1), 59 (2018). https://doi.org/10.1186/s12944-018-0704-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Asgary, A. Sahebkar, N. Goli-Malekabadi, Ameliorative effects of Nigella sativa on dyslipidemia. J. Endocrinol. Investig. 38(10), 1039–1046 (2015). https://doi.org/10.1007/s40618-015-0337-0

    Article  CAS  Google Scholar 

  40. M. el-Dakhakhny, Studies on the Egyptian Nigella sativa L. IV. Some pharmacological properties of the seeds’ active principle in comparison to its dihydro compound and its polymer. Arzneim. Forsch. 15(10), 1227–1229 (1965)

    CAS  Google Scholar 

  41. A. Badar, H. Kaatabi, A. Bamosa, A. Al-Elq, B. Abou-Hozaifa, F. Lebda, A. Alkhadra, S. Al-Almaie, Effect of Nigella sativa supplementation over a one-year period on lipid levels, blood pressure and heart rate in type-2 diabetic patients receiving oral hypoglycemic agents: nonrandomized clinical trial. Ann. Saudi Med. 37(1), 56–63 (2017). https://doi.org/10.5144/0256-4947.2017.56

    Article  PubMed  PubMed Central  Google Scholar 

  42. L. Wang, P. Lin, A. Ma, H. Zheng, K. Wang, W. Li, C. Wang, R. Zhao, K. Liang, F. Liu, X. Hou, J. Song, Y. Lu, P. Zhu, Y. Sun, L. Chen, C-peptide is independently associated with an increased risk of coronary artery disease in t2dm subjects: a cross-sectional study. PLoS ONE 10(6), e0127112 (2015). https://doi.org/10.1371/journal.pone.0127112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. H. Shafiq, A. Ahmad, T. Masud, M. Kaleem, Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran. J. Basic Med. Sci. 17(12), 967–979 (2014)

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Mohamed El Wakeel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, H.A.M., El Wakeel, L.M., Halawa, M.R. et al. Effect of Nigella Sativa oil versus metformin on glycemic control and biochemical parameters of newly diagnosed type 2 diabetes mellitus patients. Endocrine 65, 286–294 (2019). https://doi.org/10.1007/s12020-019-01963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01963-4

Keywords

Navigation