Skip to main content
Log in

The relationship among serum lipocalin 2, bone turnover markers, and bone mineral density in outpatient women

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate associations among serum levels of LCN2, bone resorption marker carboxy-terminal cross-linking telopeptide of type-1 collagen (CTx), bone formation marker osteocalcin (OCN), and bone mineral densities (BMDs) in ambulatory healthy women.

Methods

This cross-sectional study analyzed 1012 previously enrolled outpatient Han Chinese women. BMDs of the lumbar spine and femoral neck were measured using dual energy X-ray absorptiometry. Serum levels of LCN2, CTx, OCN, and creatinine (Scr) were measured.

Results

Circulating LCN2 was inversely correlated with BMDs at the lumbar spine and femoral neck (Spearman’s r = −0.08, P = 0.010 and r = −0.14, P < 0.001; respectively). A significant positive correlation between LCN2 and CTx (r = 0.11, P < 0.001), OCN (r = 0.06, P = 0.047), age (r = 0.21, P < 0.001), and Scr (r = 0.24, P < 0.001) was also observed. After adjusting for age and Scr, the correlation among LCN2, BMDs and OCN disappeared, but LCN2 was still positively associated with CTx (r = 0.08, P = 0.010). The circulating concentration of LCN2 showed no significant difference between subjects with and without osteoporotic fractures (43.63 (35.29, 53.66) vs. 42.25 (34.43, 51.46) ng/ml, respectively, P = 0.111). Serum CTx concentrations rose with serum LCN2 increasing from the lowest to the highest quartile (P for trend = 0.005), even after adjusting for age and Scr (P for trend = 0.040). In multivariate regression analysis, LCN2 was one of the main determinants for changes in serum CTx (standard β = 0.061, P = 0.005).

Conclusions

In ambulatory healthy women, the relationships among serum LCN2 level, BMDs, and OCN were confounded by age and Scr. Although LCN2 was positively related with CTx, the correlation was very weak and may not be physiologically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Zaidi, Skeletal remodeling in health and disease. Nat. Med. 13, 791–801 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. L.G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. W. Wei, T. Motoike, J.Y. Krzeszinski, Z. Jin, X.J. Xie, P.C. Dechow, M. Yanagisawa, Y. Wan, Orexin regulates bone remodeling via a dominant positive central action and a subordinate negative peripheral action. Cell. Metab. 19, 927–940 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S.K. Ramasamy, A.P. Kusumbe, L. Wang, R.H. Adams, Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Ikeda, S. Takeshita, Factors and mechanisms involved in the coupling from bone resorption to formation: how osteoclasts talk to osteoblasts. J. Bone Metab. 21, 163–167 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S. Hraba-Renevey, H. Turler, M. Kress, C. Salomon, R. Weil, SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene 4, 601–608 (1989)

    CAS  PubMed  Google Scholar 

  7. L. Kjeldsen, A.H. Johnsen, H. Sengelov, N. Borregaard, Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 268, 10425–10432 (1993)

    CAS  PubMed  Google Scholar 

  8. T.H. Flo, K.D. Smith, S. Sato, D.J. Rodriguez, M.A. Holmes, R.K. Strong, S. Akira, A. Aderem, Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Q.W. Yan, Q. Yang, N. Mody, T.E. Graham, C.H. Hsu, Z. Xu, N.E. Houstis, B.B. Kahn, E.D. Rosen, The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. I. Mosialou, S. Shikhel, J.M. Liu, A. Maurizi, N. Luo, Z. He, Y. Huang, H. Zong, R.A. Friedman, J. Barasch, P. Lanzano, L. Deng, R.L. Leibel, M. Rubin, T. Nicholas, W. Chung, L.M. Zeltser, K.W. Williams, J.E. Pessin, S. Kousteni, MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543, 385–390 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Wang, K.S. Lam, E.W. Kraegen, G. Sweeney, J. Zhang, A.W. Tso, W.S. Chow, N.M. Wat, J.Y. Xu, R.L. Hoo, A. Xu, Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin. Chem. 53, 34–41 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. A. Viau, K. El Karoui, D. Laouari, M. Burtin, C. Nguyen, K. Mori, E. Pillebout, T. Berger, T.W. Mak, B. Knebelmann, G. Friedlander, J. Barasch, F. Terzi, Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J. Clin. Invest. 120, 4065–4076 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Leng, T. Ding, H. Lin, Y. Wang, L. Hu, J. Hu, B. Feig, W. Zhang, L. Pusztai, W.F. Symmans, Y. Wu, R.B. Arlinghaus, Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res. 69, 8579–8584 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. M. Mucha, A. Skrzypiec, E. Schiavon, B. Attwood, E. Kucerova, R. Pawlak, Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl. Acad. Sci. USA 108, 18436–18441 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Lindberg, S.H. Pedersen, R. Mogelvang, J.S. Jensen, A. Flyvbjerg, S. Galatius, N.E. Magnusson, Prognostic utility of neutrophil gelatinase-associated lipocalin in predicting mortality and cardiovascular events in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 60, 339–345 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. J.M. Warszawska, R. Gawish, O. Sharif, S. Sigel, B. Doninger, K. Lakovits, I. Mesteri, M. Nairz, L. Boon, A. Spiel, V. Fuhrmann, B. Strobl, M. Muller, P. Schenk, G. Weiss, S. Knapp, Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J. Clin. Invest. 123, 3363–3372 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Capulli, A. Rufo, A. Teti, N. Rucci, Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a “mechanoresponsive osteoblast gene signature”. J. Cell. Biochem. 107, 240–252 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. N. Rucci, M. Capulli, S.G. Piperni, A. Cappariello, P. Lau, P. Frings-Meuthen, M. Heer, A. Teti, Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J. Bone Miner. Res. 30, 357–368 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. V. Veeriah, A. Zanniti, R. Paone, S. Chatterjee, N. Rucci, A. Teti, M. Capulli, Interleukin-1beta, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci. Rep. 6, 29880 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Lu, L. Xia, Y.C. Liu, T. Hochman, L. Bizzari, D. Aruch, J. Lew, R. Weinberg, J.D. Goldberg, R. Hoffman, Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood 126, 972–982 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H.J. Kim, H.J. Yoon, K.A. Yoon, M.R. Gwon, S. Jin Seong, K. Suk, S.Y. Kim, Y.R. Yoon, Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells. Exp. Cell. Res. 334, 301–309 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. H.J. Kim, B. Ohk, W.Y. Kang, S.J. Seong, K. Suk, M.S. Lim, S.Y. Kim, Y.R. Yoon, Deficiency of lipocalin-2 promotes proliferation and differentiation of osteoclast precursors via regulation of c-Fms expression and nuclear factor-kappa B activation. J. Bone Metab. 23, 8–15 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. P. Frings-Meuthen, J. Buehlmeier, N. Baecker, P. Stehle, R. Fimmers, F. May, G. Kluge, M. Heer, High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses. J. Appl. Physiol. 111, 537–542 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. W.H. Lim, G. Wong, E.M. Lim, E. Byrnes, K. Zhu, A. Devine, N.J. Pavlos, R.L. Prince, J.R. Lewis, Circulating lipocalin 2 levels predict fracture-related hospitalizations in elderly women: a prospective cohort study. J. Bone Miner. Res. 30, 2078–2085 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. C. Cervellati, G. Bonaccorsi, C. Bergamini, E. Fila, P. Greco, G. Valacchi, L. Massari, A. Gonelli, V. Tisato, Association between circulatory levels of adipokines and bone mineral density in postmenopausal women. Menopause 23, 984–992 (2016)

    Article  PubMed  Google Scholar 

  26. C.M. Paton, M.P. Rogowski, A.L. Kozimor, J.L. Stevenson, H. Chang, J.A. Cooper, Lipocalin-2 increases fat oxidation in vitro and is correlated with energy expenditure in normal weight but not obese women. Obesity 21, E640–E648 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. N.M. Rashad, A.S. El-Shal, R.L. Etewa, F.M. Wadea, Lipocalin-2 expression and serum levels as early predictors of type 2 diabetes mellitus in obese women. IUBMB Life 69, 88–97 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. T. Auguet, Y. Quintero, X. Terra, S. Martinez, A. Lucas, S. Pellitero, C. Aguilar, M. Hernandez, D. del Castillo, C. Richart, Upregulation of lipocalin 2 in adipose tissues of severely obese women: positive relationship with proinflammatory cytokines. Obesity 19, 2295–2300 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. J. Mishra, C. Dent, R. Tarabishi, M.M. Mitsnefes, Q. Ma, C. Kelly, S.M. Ruff, K. Zahedi, M. Shao, J. Bean, K. Mori, J. Barasch, P. Devarajan, Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365, 1231–1238 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. M. Haase, R. Bellomo, P. Devarajan, P. Schlattmann, A. Haase-Fielitz, and N.M.-a.I. Group, Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 54, 1012–1024 (2009)

  31. J. Wang, H. Zhu, J. Xue, S. Wu, Z. Chen, Effects of storage conditions on the stability of serum CD163, NGAL, HMGB1 and MIP2. Int. J. Clin. Exp. Pathol. 8, 4099–4105 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. D. Sulistyoningrum, D. Gasevic, S. Lear, J. Ho, A. Mente, A. Devlin, Total and high molecular weight adiponectin and ethnic-specific differences in adiposity and insulin resistance: a cross-sectional study. Cardiovasc. Diabetol. 12, 170 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  33. J. Morley, Anorexia of aging physiologic and pathologic. Am. J. Clin. Nutr. 66, 760–773 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Stavroula Kousteni and Ioanna Mosialou from the Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, USA for their critical comments on this manuscript.

Funding

This work was supported by National Natural Science Foundation of China (grant number 81370977 and 81570796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-min Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dong-mei Liu and Hong-yan Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Dm., Zhao, Hy., Zhao, L. et al. The relationship among serum lipocalin 2, bone turnover markers, and bone mineral density in outpatient women. Endocrine 59, 304–310 (2018). https://doi.org/10.1007/s12020-017-1504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1504-1

Keywords

Navigation