Skip to main content

Advertisement

Log in

Association of fetuin B with markers of liver fibrosis in nonalcoholic fatty liver disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Objective

The liver-derived plasma protein fetuin B is associated with nonalcoholic fatty liver disease (NAFLD) and impaired glucose homeostasis in mice. However, its association with non-invasive ultrasound- and magnetic resonance (MR)-based markers of liver fibrosis and steatosis, the enhanced liver fibrosis (ELF) score, liver biopsy, as well as rs738409 in PNPLA3, has not been elucidated in NAFLD, so far.

Design and methods

The association of circulating fetuin B and transient elastography (TE), controlled attenuation parameter (CAP), 1H-MR-spectroscopy, the ELF score, liver biopsy, as well as risk alleles in rs738409 in PNPLA3, was studied in 101 NAFLD patients as compared to 15 healthy controls.

Results

Serum fetuin B levels did not differ between NAFLD patients and controls (p = 0.863). Fetuin B was independently and negatively associated with transient elastography liver stiffness measurement (LSM) (p = 0.002), but not with the steatosis markers CAP or 1H-MR-spectroscopy. Fetuin B serum concentrations were significantly lower in individuals with LSM > 7.0 kPa as compared to patients with LSM < 7.0 kPa (p = 0.024). Furthermore, the ELF score and histologically proven fibrosis were independent and negative predictors of circulating fetuin B. Moreover, serum fetuin B significantly depended on number of rs738409 risk alleles (p = 0.026).

Conclusions

Fetuin B is independently and negatively associated with non-invasive markers of liver fibrosis and PNPLA3 status in NAFLD patients but does not show a correlation with the hepatic lipid content. Future studies need to elucidate the pathophysiological significance of fetuin B in NAFLD and its potential value as predictor for disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Abenavoli, N. Milic, L. Di Renzo, T. Preveden, M. Medić-Stojanoska, A. De Lorenzo, Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J. Gastroenterol. 22, 7006 (2016). https://doi.org/10.3748/wjg.v22.i31.7006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. N. Chalasani, Z. Younossi, J.E. Lavine et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the american gastroenterological association, American association for the study of liver diseases, and American college of gastroenterology. Gastroenterology 142, 1592–1609 (2012). https://doi.org/10.1053/j.gastro.2012.04.001

    Article  PubMed  Google Scholar 

  3. M. Sayiner, A. Koenig, L. Henry, Z.M. Younossi, Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin. Liver Dis. 20, 205–214 (2016). https://doi.org/10.1016/j.cld.2015.10.001

    Article  PubMed  Google Scholar 

  4. J.H. Ix, K. Sharma, Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-a, adiponectin, and AMPK. J. Am. Soc. Nephrol. 21, 406–412 (2010). https://doi.org/10.1681/ASN.2009080820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K.R. Chacko, J. Reinus, Extrahepatic complications of nonalcoholic fatty liver disease. Clin. Liver. Dis. 20, 387–401 (2016). https://doi.org/10.1016/j.cld.2015.10.004

    Article  PubMed  Google Scholar 

  6. T. Ebert, S. Kralisch, U. Loessner et al. Relationship between serum levels of angiopoietin-related growth factor and metabolic risk factors. Horm. Metab. Res. 46, 685–690 (2014). https://doi.org/10.1055/s-0034-1382078

    Article  CAS  PubMed  Google Scholar 

  7. J. Liu, Y. Xu, Y. Hu, G. Wang, The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metab. Clin. Exp. 64, 380–390 (2015). https://doi.org/10.1016/j.metabol.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  8. S. Kralisch, A. Tönjes, K. Krause et al. Fibroblast growth factor-21 serum concentrations are associated with metabolic and hepatic markers in humans. J. Endocrinol. 216, 135–143 (2013). https://doi.org/10.1530/JOE-12-0367

    Article  CAS  PubMed  Google Scholar 

  9. N. Stefan, A.M. Hennige, H. Staiger et al. α2-Heremans-schmid glycoprotein/ Fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 29, 853–857 (2006). https://doi.org/10.2337/diacare.29.04.06.dc05-1938

    Article  CAS  PubMed  Google Scholar 

  10. K. Mori, M. Emoto, H. Yokoyama et al. Association of serum fetuin-a with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 29, 468–468 (2006). https://doi.org/10.2337/diacare.29.02.06.dc05-1484

    Article  PubMed  Google Scholar 

  11. R.C.R. Meex, M.J. Watt, Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. (2017). https://doi.org/10.1038/nrendo.2017.56

  12. R.C. Meex, A.J. Hoy, A. Morris et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 22, 1078–1089 (2015). https://doi.org/10.1016/j.cmet.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  13. Y. Yilmaz, Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol. Ther. 36, 815–823 (2012). https://doi.org/10.1111/apt.12046

    Article  CAS  PubMed  Google Scholar 

  14. S. Buch, F. Stickel, E. Trépo et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat .Genet. 47, 1443–1448 (2015). https://doi.org/10.1038/ng.3417

    Article  CAS  PubMed  Google Scholar 

  15. S. Romeo, J. Kozlitina, C. Xing et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008). https://doi.org/10.1038/ng.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Karlas, D. Petroff, N. Garnov et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS ONE 9, e91987 (2014). https://doi.org/10.1371/journal.pone.0091987

    Article  PubMed  PubMed Central  Google Scholar 

  17. T. Karlas, J. Berger, N. Garnov et al. Estimating steatosis and fibrosis: comparison of acoustic structure quantification with established techniques. World J. Gastroenterol. 21, 4894–4902 (2015). https://doi.org/10.3748/wjg.v21.i16.4894

    Article  PubMed  PubMed Central  Google Scholar 

  18. D.E. Kleiner, E.M. Brunt, M. Van Natta et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005). https://doi.org/10.1002/hep.20701

    Article  PubMed  Google Scholar 

  19. J. Boursier, J.-P. Zarski, V. de Ledinghen et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 57, 1182–1191 (2013). https://doi.org/10.1002/hep.25993

    Article  PubMed  Google Scholar 

  20. V.W. Wong, J. Vergniol, G.L.-H. Wong et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 51, 454–462 (2010). https://doi.org/10.1002/hep.23312

    Article  CAS  PubMed  Google Scholar 

  21. G.L.-H. Wong, J. Vergniol, P. Lo et al. Non-invasive assessment of liver fibrosis with transient elastography (FibroScan®): applying the cut-offs of M probe to XL probe. Ann. Hepatol. 12, 570–580 (2013)

    PubMed  Google Scholar 

  22. T. Karlas, D. Petroff, M. Sasso et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J. Hepatol. 66, 1022–1030 (2017). https://doi.org/10.1016/j.jhep.2016.12.022

  23. S. Kralisch, A. Hoffmann, U. Lössner et al. Regulation of the novel adipokines/ hepatokines fetuin A and fetuin B in gestational diabetes mellitus. Metabolism 68, 88–94 (2017). https://doi.org/10.1016/j.metabol.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  24. S. Kralisch, A. Hoffmann, N. Klöting et al. The novel adipokine/hepatokine fetuin B in severe human and murine diabetic kidney disease. Diabetes Metab. (2017). https://doi.org/10.1016/j.diabet.2017.01.005

  25. P. Angulo, J.M. Hui, G. Marchesini et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45, 846–854 (2007). https://doi.org/10.1002/hep.21496

    Article  CAS  PubMed  Google Scholar 

  26. T. Karlas, A. Dietrich, V. Peter et al. Evaluation of transient elastography, acoustic radiation force impulse imaging (ARFI), and enhanced liver function (ELF) score for detection of fibrosis in morbidly obese patients. PLoS ONE 10, e0141649 (2015). https://doi.org/10.1371/journal.pone.0141649

    Article  PubMed  PubMed Central  Google Scholar 

  27. R. Lichtinghagen, D. Pietsch, H. Bantel, M.P. Manns, K. Brand, M.J. Bahr, The enhanced liver fibrosis (ELF) score: Normal values, influence factors and proposed cut-off values. J. Hepatol. 59, 236–242 (2013). https://doi.org/10.1016/j.jhep.2013.03.016

    Article  PubMed  Google Scholar 

  28. G. Bedogni, S. Bellentani, L. Miglioli et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 6, 33 (2006). https://doi.org/10.1186/1471-230X-6-33

    Article  PubMed  PubMed Central  Google Scholar 

  29. T. Karlas, J. Kollmeier, S. Böhm et al. Noninvasive characterization of graft steatosis after liver transplantation. Scand. J. Gastroenterol. 50, 224–232 (2015). https://doi.org/10.3109/00365521.2014.983156

    Article  CAS  PubMed  Google Scholar 

  30. K.J. Fagan, C.J. Pretorius, L.U. Horsfall et al. ELF score ≥9.8 indicates advanced hepatic fibrosis and is influenced by age, steatosis and histological activity. Liver Int. 35, 1673–1681 (2015). https://doi.org/10.1111/liv.12760

    Article  PubMed  Google Scholar 

  31. J. Zhu, X. Wan, Y. Wang et al. Serum fetuin B level increased in subjects of nonalcoholic fatty liver disease: a case-control study. Endocrine 56, 208–211 (2017). https://doi.org/10.1007/s12020-016-1112-5

    Article  CAS  PubMed  Google Scholar 

  32. B. Denecke, S. Gräber, C. Schäfer, A. Heiss, M. Wöltje, W. Jahnen-Dechent, Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem. J. 376, 135–145 (2003). https://doi.org/10.1042/bj20030676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Abenavoli, M. Beaugrand, Transient elastography in non-alcoholic fatty liver disease. Ann. Hepatol. 11, 172–178 (2012)

    PubMed  Google Scholar 

  34. N. Stefan, H.-U. Häring, The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9, 144–152 (2013). https://doi.org/10.1038/nrendo.2012.258

    Article  CAS  PubMed  Google Scholar 

  35. E. Olivier, E. Soury, P. Ruminy et al. Fetuin-B, a second member of the fetuin family in mammals. Biochem. J. 350, 589–597 (2000). https://doi.org/10.1042/bj3500589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Sato, Y. Kamada, Y. Takeda et al. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int. 35, 925–935 (2015). https://doi.org/10.1111/liv.12478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yvonne Kurth (Division of Gastroenterology and Rheumatology, University Hospital Leipzig), Kilian Solty (IFB AdiposityDiseases, University of Leipzig), and Ulrike Lössner (Department of Endocrinology and Nephrology and IFB AdiposityDiseases, University of Leipzig) for technical assistance.

Funding

This work was supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1001 (IFB AdiposityDiseases, MetaRot program) to T.E.

Author contributions

T.E., J.W., and T.K. wrote the manuscript and researched data. A.S., N.L., H.B., J.B., and V.K. researched data and reviewed/edited the manuscript. Guarantors: Dr. Thomas Ebert and Dr. Thomas Karlas are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ebert.

Ethics declarations

Conflict of interest

T.K., J.W., and V.K. received an unrestricted research grant from Echosens, Paris, France not directly related to the present study. J.W. and R.L. received lecturer fees from Siemens. The ELF score analyses were sponsored by a research grant from Siemens to J.W. Other authors declare that they have no competing interests.

Additional information

Johannes Wiegand and Thomas Karlas contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebert, T., Linder, N., Schaudinn, A. et al. Association of fetuin B with markers of liver fibrosis in nonalcoholic fatty liver disease. Endocrine 58, 246–252 (2017). https://doi.org/10.1007/s12020-017-1417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1417-z

Keywords

Navigation