Skip to main content

Advertisement

Log in

Proteasome inhibitor MG132 induces thyroid cancer cell apoptosis by modulating the activity of transcription factor FOXO3a

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Proteasome inhibitors are promising antitumor drugs with preferable cytotoxicity in malignant cells and have exhibited clinical efficiency in several hematologic malignancies. P53-dependent apoptosis has been reported to be a major mechanism underlying. However, apoptosis can also be found in cancer cells with mutant-type p53, suggesting the involvement of p53-independent mechanism. Tumor suppressor forkhead Box O3 is another substrate of proteasomal degradation, which also functions partially through inducing apoptosis. The aim of this study was to explore the effect of proteasome inhibition on the expression and activity of forkhead Box O3 in thyroid cancer cells. Using flow cytometry, western blot, immunofluorescence staining and quantitative RT-PCR assays, we assessed proteasome inhibitor MG132-induced apoptosis in thyroid cancer cells and its effect on the expression and activity of forkhead Box O3. The resulted showed that MG132 induced significant apoptosis, and caused the accumulation of p53 protein in both p53 wild-type and mutant-type thyroid cancer cell lines, whereas the proapoptotic targets of p53 were transcriptionally upregulated only in the p53 wild-type cells. Strikingly, upon MG132 administration, the accumulation and nuclear translocation of transcription factor forkhead Box O3 as well as transcriptional upregulation of its proapoptotic target genes were found in thyroid cancer cells regardless of p53 status. Cell apoptosis was enhanced by ectopic overexpression while attenuated by silencing of forkhead Box O3. Altogether, we demonstrated that proteasome inhibitor MG132 induces thyroid cancer cell apoptosis at least partially through modulating forkhead Box O3 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATC:

Anaplastic thyroid cancer

DMSO:

Dimethylsulfoxide

FOXO3a:

Forkhead Box O3

GADD45a:

Growth Arrest And DNA-Damage-Inducible 45 Alpha

MAPK:

RAS/RAF/MEK/ERK

MDM2:

Mouse Double Minute 2

PBS:

Phosphate-buffered saline

PDTC:

Poorly-differentiated thyroid cancer

PI3K/Akt:

phosphatidylinositol-3-kinase/Akt

qRT-PCR:

Quantitative RT-PCR

WDTC:

Well-differentiated thyroid cancer

References

  1. A. Jemal, F. Bray, M.M. Center et al., Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  PubMed  Google Scholar 

  2. M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13, 184–199 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. W.R. Burns, M.A. Zeiger, Differentiated thyroid cancer. Semin. Oncol. 37, 557–566 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. W.R. Cornett, A.K. Sharma, T.A. Day et al., Anaplastic thyroid carcinoma: an overview. Curr. Oncol. Rep. 9, 152–158 (2007)

    Article  PubMed  Google Scholar 

  5. R.Z. Orlowski, D.J. Kuhn, Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer. Res. 14, 1649–1657 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. L.J. Crawford, B. Walker, A.E. Irvine, Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 5, 101–110 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  7. D. Buac, M. Shen, S. Schmitt et al., From Bortezomib to other inhibitors of the proteasome and beyond. Curr. Pharm. Des. 19, 4025–4038 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Adams, V.J. Palombella, E.A. Sausville et al., Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999)

    CAS  PubMed  Google Scholar 

  9. S.J. Stoll, S.C. Pitt, H. Chen, Follicular thyroid cancer cell growth inhibition by proteosome inhibitor MG132. J. Surg. Res. 156, 39–44 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.S. Mitsiades, D. McMillin, V. Kotoula et al., Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J. Clin. Endocrinol. Metab. 91, 4013–4021 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. D. Chen, M. Frezza, S. Schmitt et al., Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets. 11, 239–253 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Vogelstein, D. Lane, A.J. Levine, Surfing the p53 network. Nature 408, 307–310 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. A.J. Levine, M. Oren, The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749–758 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K.H. Vousden, C. Prives, Blinded by the light: the growing complexity of p53. Cell. 137, 413–431 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. J.P. Kruse, W. Gu, Modes of p53 regulation. Cell 137, 609–622 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Iwakuma, G. Lozano, MDM2, an introduction. Mol. Cancer Res. 1, 993–1000 (2003)

    CAS  PubMed  Google Scholar 

  17. U.G. Lopes, P. Erhardt, R. Yao, p53-dependent induction of apoptosis by proteasome inhibitors. J. Biol. Chem. 272, 12893–12896 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. C.G. Concannon, B.F. Koehler, C. Reimertz et al., Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26, 1681–1692 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. W.X. Ding, H.M. Ni, X. Chen et al., A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol. Cancer Ther. 6, 1062–1069 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. S.A. Vaziri, D.R. Grabowski, J. Hill et al., Inhibition of proteasome activity by bortezomib in renal cancer cells is p53 dependent and VHL independent. Anticancer Res. 29, 2961–2969 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Zhang, N. Tang, T.J. Hadden et al., Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 1813, 1978–1986 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. H. Huang, D.J. Tindall, Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim. Biophys. Acta 1813, 1961–1964 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.S. Sheikh, M.C. Hollander, A.J. Fornance Jr., Role of Gadd45 in apoptosis. Biochem. Pharmacol. 59, 43–45 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. S.A. Rosemary, D.R. Richardson, Growth arrest and DNA damage-45 alpha (GADD45alpha). Int. J. Biochem. Cell Biol. 41, 986–989 (2009)

    Article  Google Scholar 

  25. H. Tran, A. Brunet, J.M. Grenier et al., DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. C. Weidinger, K. Krause, A. Klagge et al., Forkhead box-O transcription factor: critical conductors of cancer’s fate. Endocr. Relat. Cancer 15, 917–929 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. K. Maiese, Z.Z. Chong, Y.C. Shang, OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol. Med. 14, 219–227 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D.R. Plas, C.B. Thompson, Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. S. Karger, C. Weidinger, K. Krause et al., FOXO3a: a novel player in thyroid carcinogenesis?. Endocr. Relat. Cancer 16, 189–199 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. L.P. Van Der Heide, M.F. Hoekman, M.P. Smidt, The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J. 380, 297–309 (2004)

    Article  Google Scholar 

  31. W.S. Dalton, The proteasome. Semin. Oncol. 31, 3–9 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. A. Hershko, Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9, 788–799 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. A.M. Ruschak, M. Slassi, L.E. Kay et al., Novel proteasome inhibitors to overcome bortezomib resistance. J. Natl. Cancer Inst. 103, 1007–1017 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. M. Cavo, Current status of bortezomib in the treatment of multiple myeloma. Curr. Hematol. Malig. Rep. 2, 128–137 (2007)

    Article  PubMed  Google Scholar 

  35. P. Moreau, P.G. Richardson, M. Cavo et al., Proteasome inhibitors in multiple myeloma: 10 years later. Blood 120, 947–959 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J.Z. Qin, J. Ziffra, L. Stennett et al., Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 65, 6282–6293 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. T. Devine, M.S. Dai, Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr. Pharm. Des. 19, 3248–3262 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Hollstein, D. Sidransky, B. Vogelstein et al., p53 mutations in human cancers. Science 253, 49–53 (1991)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Dobashi, H. Sugimura, A. Sakamoto et al., Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn. Mol. Pathol. 3, 9–14 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. T. Hideshima, P. Richardson, D. Chauhan et al., The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61, 3071–3076 (2001)

    CAS  PubMed  Google Scholar 

  41. D. Yin, H. Zhou, T. Kumagai et al., Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24, 344–354 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. S.J. Strauss, K. Higginbottom, S. Jüliger et al., The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res. 67, 2783–2790 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Ogawara, S. Kishishita, T. Obata et al., Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem. 277, 21843–1850 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. J.Y. Yang, M.C. Hung, Deciphering the role of forkhead transcription factors in cancer therapy. Curr. Drug Targets 12, 1284–1290 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Z. Jagani, K. Song, J.L. Kutok et al., Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors. Cancer Res. 69, 6546–6555 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S.K. Roy, Q. Chen, J. Fu et al., Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One 6, e25166 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Wilk, K. Urbanska, M. Grabacka et al., Fenofibrate-induced nuclear translocation of FoxO3A triggers Bim-mediated apoptosis in glioblastoma cells in vitro. Cell Cycle 11, 2660–2671 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Fernández de Mattos, P. Villalonga, J. Clardy, FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol. Cancer Ther. 7, 3237–3246 (2008)

    Article  PubMed  Google Scholar 

  49. A. Sunters, P.A. Madureira, K.M. Pomeranz et al., Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. 66, 212–220 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. A. Singh, M. Ye, O. Bucur et al., Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT. Mol. Biol. Cell 21, 1140–1152 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81372217 and 81572627), Science and Technology Project of Shaanxi Province (No. 2014K11-01-01-09), the Fundamental Research Funds for the Central Universities (No. xjj2015022) and Fund of First Affiliated Hospital of Xi’an Jiaotong University (No. 2014YK2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, W., Sui, F., Ma, J. et al. Proteasome inhibitor MG132 induces thyroid cancer cell apoptosis by modulating the activity of transcription factor FOXO3a. Endocrine 56, 98–108 (2017). https://doi.org/10.1007/s12020-017-1256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1256-y

Keywords

Navigation