Skip to main content

Advertisement

Log in

Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In conclusion, visceral adipose tissue secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue and this secretion is more sensitive to nutritional and physiological changes. The over-secretion of alpha-2-Heremans-Schmid glycoprotein by visceral adipose tissue, the increased secretion of the active phosphorylated form by subcutaneous adipose tissuein obese animals, and the adipose-derived alpha-2-Heremans-Schmid glycoprotein capacity to inhibit the insulin pathway suggest the participation of adipose-derived alpha-2-Heremans-Schmid glycoprotein in the deleterious effects of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Denecke, S. Graber, C. Schafer, A. Heiss, M. Woltje, W. Jahnen-Dechent, Biochem. J. 376, 135 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Mori, M. Emoto, M. Inaba, Recent Pat. Endocr. Metab. Immune. Drug Discov. 5, 124 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. S.T. Mathews, N. Chellam, P.R. Srinivas, V.J. Cintron, M.A. Leon, A.S. Goustin, G. Grunberger, Mol. Cell. Endocrinol. 164, 87 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. A.M. Hennige, H. Staiger, C. Wicke, F. Machicao, A. Fritsche, H.U. Haring, N. Stefan, PLoS ONE 3, e1765 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  5. K. Mori, M. Emoto, H. Yokoyama, T. Araki, M. Teramura, H. Koyama, T. Shoji, M. Inaba, Y. Nishizawa, Diabetes. Care 29, 468 (2006)

    Article  PubMed  Google Scholar 

  6. N. Stefan, A. Fritsche, C. Weikert, H. Boeing, H.G. Joost, H.U. Haring, M.B. Schulze, Diabetes 57, 2762 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.H. Ix, K. Sharma, J. Am. Soc. Nephrol. 21, 406 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A.C. Haglund, B. Ek, P. Ek, Biochem. J. 357, 437 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Siddiq, F. Lepretre, S. Hercberg, P. Froguel, F. Gibson, Diabetes 54, 2477 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. I. Dahlman, P. Eriksson, M. Kaaman, H. Jiao, C.M. Lindgren, J. Kere, P. Arner, Diabetologia 47, 1974 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. S.T. Mathews, G.P. Singh, M. Ranalletta, V.J. Cintron, X. Qiang, A.S. Goustin, K.L. Jen, M.J. Charron, W. Jahnen-Dechent, G. Grunberger, Diabetes 51, 2450 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. S. Dasgupta., D. Pal, R. Kundu, S. Maitra, G. Das, S. Mukhopadhyay, S. Ray, S.S. Majumdar, S. Bhattacharya, Nat. Med. 18, 1279 (2012)

    Article  PubMed  Google Scholar 

  13. C.C. Lee, B.H. Bowman, F.M. Yang, Proc. Natl Acad. Sci. U S A 84, 4403 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Kellermann, H. Haupt, E.A. Auerswald, W. Muller-Ester, J. Biol. Chem. 264, 14121 (1989)

    CAS  PubMed  Google Scholar 

  15. P. Auberger, L. Falquerho, J.O. Contreres, G. Pages, G. Le Cam, B. Rossi, A. Le Cam, Cell 58, 631 (1989)

    Article  CAS  PubMed  Google Scholar 

  16. K.M. Dziegielewska, W.M. Brown, A. Deal, K.A. Foster, The expression of fetuin in the development and maturation of the hemopoietic and immune systems. Histochem. Cell Biol. 106, 319 (1996). doi:10.1007/BF02473242

  17. W. Jahnen-Dechent, A. Trindl, J. Godovac-Zimmermann, W. Muller-Esterl, Eur. J. Biochem. 226, 59 (1994)

    Article  CAS  PubMed  Google Scholar 

  18. A. Roca-Rivada, J. Alonso, O. Al-Massadi, C. Castelao, J.R. Peinado, L.M. Seoane, F.F. Casanueva, M. Pardo, J. Proteomics 74, 1068 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. P. Chatterjee, S. Seal, S. Mukherjee, R. Kundu, S. Ray, S. Mukhopadhyay, S.S. Majumdar, S. Bhattacharya, J. Biol. Chem. 288, 28324 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. I. Jialal, S. Devaraj, A. Bettaieb, F. Haj, B. Adams-Huet, Atherosclerosis 241, 130 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. A. Routtenberg, A.W. Kuznesof, J. Comp. Physiol. Psychol. 64, 414 (1967)

    Article  CAS  PubMed  Google Scholar 

  22. M. Pardo, A. Roca-Rivada, O. Al-Massadi, L.M. Seoane, J.P. Camina, F.F. Casanueva, Peptides 31, 1912 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. G. Alvarez-Llamas, E. Szalowska, M.P. de Vries, D. Weening, K. Landman, A. Hoek, B.H. Wolffenbuttel, H. Roelofsen, R.J. Vonk, Mol. Cell. Proteomics 6, 589 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Q.-Q. Tang, T.C. Otto, M.D. Lane, Proc. Natl. Acad. Sci. U S A 101, 9607 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. U. Gurriarán-Rodríguez, O. Al-Massadi, A. Roca-Rivada, A.B. Crujeiras, R. Gallego, M. Pardo, L.M. Seoane, Y. Pazos, F.F. Casanueva, J.P. Camiña, J. Cell Mol. Med. 15, 1927 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  26. J.F. Trepanowski, J. Mey, K.A. Varady, Int. J. Obes. (Lond). 39, 734 (2015)

    Article  CAS  Google Scholar 

  27. D. Samocha-Bonet, C.S. Tam, L.V. Campbell, L.K. Heilbronn, Diabetes Care 37, e15 (2014)

    Article  PubMed  Google Scholar 

  28. K.N. Robinson, M. Teran-Garcia, Biochimie 124, 141 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. S.K. Malin, J.P. del Rincon, H. Huang, J.P. Kirwan, Med. Sci. Sports Exerc. 46, 2085 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S.K. Malin, A. Mulya, C.E. Fealy, J.M. Haus, M.R. Pagadala, A.R. Scelsi, H. Huang, C.A. Flask, A.J. McCullough, J.P. Kirwan, J. Appl. Physiol. 115, 988 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K.M. Choi, K.A. Han, H.J. Ahn, S.Y. Lee, S.Y. Hwang, B.-H. Kim, H.C. Hong, H.Y. Choi, S.J. Yang, H.J. Yoo, S.H. Baik, D.S. Choi, K.W. Min, Clin. Endocrinol. (Oxf). 79, 356 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. P. Patel, N. Abate, Nutrients 5, 2019 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  33. M.N. Kundranda, S. Ray, M. Saria, D. Friedman, L.M. Matrisian, P. Lukyanov, J. Ochieng, Biochim. Biophys. Acta 1693, 111 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. T. Maier, M. Güell, L. Serrano, FEBS Lett. 583, 3966 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. C. Vogel, E.M. Marcotte, Nat. Rev. Genet. 13, 227 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by Instituto de Salud Carlos III-cofinanciado FEDER (PI10/00537). Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición is an ISCIII iniciative. D.P-S is funded by the Health Research Institute of Santiago (IDIS) and M.P is a Miguel Servet Fellow (Instituto de Salud Carlos III/SERGAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pardo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Sotelo, D., Roca-Rivada, A., Larrosa-García, M. et al. Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity. Endocrine 55, 435–446 (2017). https://doi.org/10.1007/s12020-016-1132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1132-1

Keywords

Navigation