Skip to main content

Advertisement

Log in

Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the correlation between serum microRNA-217 and the severity of diabetic kidney disease determined by albuminuria. Four hundred ninety five type 2 diabetes patients were divided into three groups: normoalbuminuric group, microalbuminuric group, and macroalbuminuric group. Serum microRNA-217 levels were validated by real-time polymerase chain reaction. Serum silent information regulator 1, Hypoxia-inducible factor-1α and vascular endothelial growth factor were determined by enzyme-linked immunosorbent assay. Compared with control, serum microRNA-217 levels were significantly increased in type 2 diabetes patients and gradually increased in patients of normoalbuminuric, microalbuminuric, and macroalbuminuric groups (P < 0.01). Moreover, increased levels of serum microRNA-217, hypoxia-inducible factor-1α, vascular endothelial growth factor, diabetes mellitus duration, fasting blood glucose, fasting insulin, homeostasis model assessment for insulin resistance, glycated hemoglobin, low-density lipoprotein, total cholesterol, triglyceride, uric acid, serum creatinine, blood urea nitrogen, and decreased levels of serum silent information regulator 1 and high-density lipoprotein were significantly correlated with Ln(ACR) (P < 0.05). In addition, serum microRNA-217 was positively correlated with diabetes mellitus duration, homeostasis model assessment for insulin resistance, glycated hemoglobin, Ln(ACR), low-density lipoprotein, total cholesterol, triglyceride, uric acid, serum creatinine, blood urea nitrogen, hypoxia-inducible factor-1α, vascular endothelial growth factor (P < 0.05), and negatively correlated with serum silent information regulator 1 (P = 0.002). Our findings suggest that microRNA-217 may have an association with the development of proteinuria in type 2 diabetes patients. Serum microRNA-217 may be involved in the development of diabetic kidney disease by promoting chronic inflammation, renal fibrosis, and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. Betz, B.R. Conway, Recent advances in animal models of diabetic nephropathy. Nephron. Exp. Nephrol. 126(4), 191–195 (2014). doi:10.1159/000363300

    Article  CAS  PubMed  Google Scholar 

  2. S. Rizvi, S.T. Raza, F. Mahdi, Association of genetic variants with diabetic nephropathy. World J. Diabetes 5(6), 809–816 (2014). doi:10.4239/wjd.v5.i6.809

    Article  PubMed  PubMed Central  Google Scholar 

  3. P. Arner, A. Kulyte, MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 11(5), 276–288 (2015). doi:10.1038/nrendo.2015.25

    Article  CAS  PubMed  Google Scholar 

  4. F.V. Duarte, C.M. Palmeira, A.P. Rolo, The Role of microRNAs in Mitochondria: small players acting wide. Genes 5(4), 865–886 (2014). doi:10.3390/genes5040865

    Article  PubMed  PubMed Central  Google Scholar 

  5. H. Wu, L. Kong, S. Zhou, W. Cui, F. Xu, M. Luo, X. Li, Y. Tan, L. Miao, The role of microRNAs in diabetic nephropathy. J. Diabetes Res. 2014, 920134 (2014). doi:10.1155/2014/920134

    PubMed  PubMed Central  Google Scholar 

  6. T. Gohda, Y. Tomino, Novel biomarkers for the progression of diabetic nephropathy: soluble TNF receptors. Curr. Diab. Rep. 13(4), 560–566 (2013). doi:10.1007/s11892-013-0385-9

    Article  CAS  PubMed  Google Scholar 

  7. C. Higuchi, A. Nakatsuka, J. Eguchi, S. Teshigawara, M. Kanzaki, A. Katayama, S. Yamaguchi, N. Takahashi, K. Murakami, D. Ogawa, S. Sasaki, H. Makino, J. Wada, Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism 64(4), 489–497 (2015). doi:10.1016/j.metabol.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  8. S. Zhang, L. Liu, R. Wang, H. Tuo, Y. Guo, L. Yi, D. Wang, J. Wang, MicroRNA-217 promotes angiogenesis of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and FOXO3A. PloS One 8(12), e83620 (2013). doi:10.1371/journal.pone.0083620

    Article  PubMed  PubMed Central  Google Scholar 

  9. T. Staszel, B. Zapala, A. Polus, A. Sadakierska-Chudy, B. Kiec-Wilk, E. Stepien, I. Wybranska, M. Chojnacka, A. Dembinska-Kiec, Role of microRNAs in endothelial cell pathophysiology. Pol .Arch .Med. Wewn. 121(10), 361–366 (2011)

    CAS  PubMed  Google Scholar 

  10. S. Tian, J. Tang, H. Liu, L. Wang, J. Shen, J. Li, Y. Gan, Propyl gallate plays a nephroprotective role in early stage of diabetic nephropathy associated with suppression of glomerular endothelial cell proliferation and angiogenesis. Exp. Diabetes Res. 2012, 209567 (2012). doi:10.1155/2012/209567

    Article  PubMed  PubMed Central  Google Scholar 

  11. D. Goodwin, B. Rosenzweig, J. Zhang, L. Xu, S. Stewart, K. Thompson, R. Rouse, Evaluation of miR-216a and miR-217 as potential biomarkers of acute pancreatic injury in rats and mice. Biomarkers 19(6), 517–529 (2014). doi:10.3109/1354750X.2014.944217

    Article  CAS  PubMed  Google Scholar 

  12. Y.J. Dong, N. Liu, Z. Xiao, T. Sun, S.H. Wu, W.X. Sun, Z.G. Xu, H. Yuan, Renal protective effect of sirtuin 1. J. Diabetes Res. 2014, 843786 (2014). doi:10.1155/2014/843786

    Article  PubMed  PubMed Central  Google Scholar 

  13. R. Menghini, V. Casagrande, M. Cardellini, E. Martelli, A. Terrinoni, F. Amati, M. Vasa-Nicotera, A. Ippoliti, G. Novelli, G. Melino, R. Lauro, M. Federici, MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15), 1524–1532 (2009). doi:10.1161/CIRCULATIONAHA.109.864629

    Article  CAS  PubMed  Google Scholar 

  14. K. Matoba, D. Kawanami, R. Okada, M. Tsukamoto, J. Kinoshita, T. Ito, S. Ishizawa, Y. Kanazawa, T. Yokota, N. Murai, S. Matsufuji, J. Takahashi-Fujigasaki, K. Utsunomiya, Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1alpha. Kidney Int. 84(3), 545–554 (2013). doi:10.1038/ki.2013.130

    Article  CAS  PubMed  Google Scholar 

  15. T. Nakagawa, W. Sato, T. Kosugi, R.J. Johnson, Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy. J. Diabetes Res. 2013, 184539 (2013). doi:10.1155/2013/184539

    Article  PubMed  PubMed Central  Google Scholar 

  16. H.Y. Joo, M. Yun, J. Jeong, E.R. Park, H.J. Shin, S.R. Woo, J.K. Jung, Y.M. Kim, J.J. Park, J. Kim, K.H. Lee, SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1alpha (HIF-1alpha) via direct interactions during hypoxia. Biochem. Biophys. Res. Commun. 462(4), 294–300 (2015). doi:10.1016/j.bbrc.2015.04.119

    Article  CAS  PubMed  Google Scholar 

  17. C. Lv, Y.H. Zhou, C. Wu, Y. Shao, C.L. Lu, Q.Y. Wang: The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy. Diabetes Metab. Res. Rev. (2015). doi:10.1002/dmrr.2659

  18. Y.C. Wang, Y. Li, X.Y. Wang, D. Zhang, H. Zhang, Q. Wu, Y.Q. He, J.Y. Wang, L. Zhang, H. Xia, J. Yan, X. Li, H. Ying, Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 56(10), 2275–2285 (2013). doi:10.1007/s00125-013-2996-8

    Article  CAS  PubMed  Google Scholar 

  19. F.J. Ortega, J.M. Mercader, J.M. Moreno-Navarrete, O. Rovira, E. Guerra, E. Esteve, G. Xifra, C. Martinez, W. Ricart, J. Rieusset, S. Rome, M. Karczewska-Kupczewska, M. Straczkowski, J.M. Fernandez-Real, Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5), 1375–1383 (2014). doi:10.2337/dc13-1847

    Article  CAS  PubMed  Google Scholar 

  20. M. Rudnicki, A. Beckers, H. Neuwirt, J. Vandesompele, RNA expression signatures and posttranscriptional regulation in diabetic nephropathy. Nephrol. Dial. Transplant. 30 Suppl 4, iv35–42 (2015). doi:10.1093/ndt/gfv079

    Article  PubMed  Google Scholar 

  21. L. Sun, D. Zhang, F. Liu, X. Xiang, G. Ling, L. Xiao, Y. Liu, X. Zhu, M. Zhan, Y. Yang, V.K. Kondeti, Y.S. Kanwar, Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J. Pathol. 225(3), 364–377 (2011). doi:10.1002/path.2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. B. Qin, H. Yang, B. Xiao, Role of microRNAs in endothelial inflammation and senescence. Mol. Biol. Rep. 39(4), 4509–4518 (2012). doi:10.1007/s11033-011-1241-0

    Article  CAS  PubMed  Google Scholar 

  23. H. Yin, X. Liang, A. Jogasuria, N.O. Davidson, M. You, miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. Am. J. Pathol. 185(5), 1286–1296 (2015). doi:10.1016/j.ajpath.2015.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Shao, C. Lv, C. Wu, Y. Zhou, Q. Wang, Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1alpha signaling pathway. Diabetes Metab. Res. Rev. (2016). doi:10.1002/dmrr.2788

  25. L.T. Weckbach, U. Grabmaier, S. Clauss, R. Wakili, MicroRNAs as a diagnostic tool for heart failure and atrial fibrillation. Curr. Opin. Pharmacol. 27, 24–30 (2016). doi:10.1016/j.coph.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  26. L. Fiorentino, M. Cavalera, M. Mavilio, F. Conserva, R. Menghini, L. Gesualdo, M. Federici, Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol. 50(6), 965–969 (2013). doi:10.1007/s00592-013-0492-8

    Article  CAS  PubMed  Google Scholar 

  27. S. Wakino, K. Hasegawa, H. Itoh, Sirtuin and metabolic kidney disease. Kidney Int. (2015). doi:10.1002/dmrr.278810.1038/ki.2015.157

  28. R. Li, L. Uttarwar, B. Gao, M. Charbonneau, Y. Shi, J.S. Chan, C.M. Dubois, J.C. Krepinsky, High Glucose Up-regulates ADAM17 through HIF-1alpha in Mesangial cells. J. Biol. Chem. 290(35), 21603–21614 (2015). doi:10.1074/jbc.M115.651604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M.K. Kang, S.S. Lim, J.Y. Lee, K.M. Yeo, Y.H. Kang, Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis. PloS One 8(11), e79823 (2013). doi:10.1371/journal.pone.0079823

    Article  PubMed  PubMed Central  Google Scholar 

  30. K. Tanaka, S. Hara, M. Hattori, K. Sakai, Y. Onishi, Y. Yoshida, S. Kawazu, A. Kushiyama, Role of elevated serum uric acid levels at the onset of overt nephropathy in the risk for renal function decline in patients with type 2 diabetes. J. Diabetes Investig. 6(1), 98–104 (2015). doi:10.1111/jdi.12243

    Article  CAS  PubMed  Google Scholar 

  31. Y. Zhang, K.L. Ma, J. Liu, Y. Wu, Z.B. Hu, L. Liu, B.C. Liu, Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy. Am. J. Physiol. Endocrinol. Metab. 308(12), E1140–E1148 (2015). doi:10.1152/ajpendo.00591.2014

    Article  PubMed  Google Scholar 

  32. P. Bjornstad, M.A. Lanaspa, T. Ishimoto, T. Kosugi, S. Kume, D. Jalal, D.M. Maahs, J.K. Snell-Bergeon, R.J. Johnson, T. Nakagawa, Fructose and uric acid in diabetic nephropathy. Diabetologia 58(9), 1993–2002 (2015). doi:10.1007/s00125-015-3650-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Kato, S. Putta, M. Wang, H. Yuan, L. Lanting, I. Nair, A. Gunn, Y. Nakagawa, H. Shimano, I. Todorov, J.J. Rossi, R. Natarajan, TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11(7), 881–889 (2009). doi:10.1038/ncb1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was financed by “High-end Talent Team Construction” in Liaoning province ([2014]187, Liaoning province, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyue Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This study was approved by the medical ethics committee at The First Affiliated Hospital of China Medical University. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Ren, H., Lv, C. et al. Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine 55, 130–138 (2017). https://doi.org/10.1007/s12020-016-1069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1069-4

Keywords

Navigation