Skip to main content

Advertisement

Log in

Inhibition of tumor suppressor p53 preserves glycation-serum induced pancreatic beta-cell demise

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Tumor suppressor p53 is a transcriptional factor that determines cell fate in response to multiple stressors, such as oxidative stress and endoplasmic reticulum stress, in the majority of cells. However, its role in pancreatic beta cells is not well documented. Our previous research has revealed that glycation-serum (GS) induced pancreatic beta-cell demise through the AGEs-RAGE pathway. In the present study, we investigated the role of p53 in GS-related beta-cell demise. Using pancreatic islets beta-cell line INS-1 cells, we found that with GS treatment, the transcriptional activity of p53 was significantly evoked due to the increased amount of nuclear p53 protein. Resveratrol (RSV) was capable of further enhancing this transcriptional ability and consequently increased the population of dead beta cells under GS exposure. In contrast, inhibiting this transcriptional activity via p53 interference greatly protected beta cells from the damage provoked by GS, as well as damage strengthened by RSV. However, the pharmacological activation of PPARγ with troglitazone (TRO) only suppressed GS-induced, not RSV-induced, p53 activity. Moreover, the activation of PPARγ greatly preserved beta cells from GS-induced death. This protective effect recurred due to improved mitochondrial function with Bcl2 overexpression. Further, p53 activation could induce cellular apoptosis in primary rat islets. Our findings explore the broader role of p53 in regulating pancreatic beta-cell demise in the presence of GS and may provide a therapeutic target for the treatment and prevention of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Fu, E.R. Gilbert, D. Liu, Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Cernea, M. Dobreanu, Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochemia Medica 23, 266–280 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. Hirasawa, Y. Matsui, S. Ohtsu, K. Yamane, T. Toyoshi, K. Kyuki, T. Sakai, Y. Feng, T. Nagamatsu, Involvement of hyperglycemia in deposition of aggregated protein in glomeruli of diabetic mice. Eur. J. Pharmacol. 601, 129–135 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. K. Nowotny, T. Jung, A. Hohn, D. Weber, T. Grune, Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5, 194–222 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. O’Brien, P.A. Morrissey, Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr. 28, 211–248 (1989)

    Article  PubMed  Google Scholar 

  6. R. Ramasamy, S.J. Vannucci, S.S. Yan, K. Herold, S.F. Yan, A.M. Schmidt, Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15, 16R–28R (2005)

    Article  CAS  PubMed  Google Scholar 

  7. H. Vlassara, G.E. Striker, Advanced glycation end products in diabetes and diabetic complications. Endocrinol. Metab. Clin. N. Am. 42, 697–719 (2013)

    Article  Google Scholar 

  8. R. Pokupec, M. Kalauz, N. Turk, Z. Turk, Advanced glycation end products in human diabetic and non-diabetic cataractous lenses. Graefes. Arch. Clin. Exp. Ophthalmol. 241, 378–384 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. O. Sandu, K. Song, W. Cai, F. Zheng, J. Uribarri, H. Vlassara, Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 54, 2314–2319 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. E.J. Gallagher, D. LeRoith, E. Karnieli, The metabolic syndrome-from insulin resistance to obesity and diabetes. Endocrinol. Metab. Clin. N. Am. 37, 559–579 (2008)

    Article  CAS  Google Scholar 

  11. W. Cai, M. Ramdas, L. Zhu, X. Chen, G.E. Striker, H. Vlassara, Oral advanced glycation end products (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. USA 109, 15888–15893 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Luciano Viviani, A. Puddu, G. Sacchi, A. Garuti, D. Storace, A. Durante, F. Monacelli, P. Odetti, Glycated fetal calf serum affects the viability of an insulin-secreting cell line in vitro. Metabolism. 57, 163–169 (2008)

    Article  PubMed  Google Scholar 

  13. X. Kong, G.D. Wang, M.Z. Ma, R.Y. Deng, L.Q. Guo, J.X. Zhang, J.R. Yang, Q. Su, Sesamin ameliorates advanced glycation end products-induced pancreatic beta-cell dysfunction and apoptosis. Nutrients 7, 4689–4704 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Uribarri, W. Cai, M. Ramdas, S. Goodman, R. Pyzik, X. Chen, L. Zhu, G.E. Striker, H. Vlassara, Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care 34, 1610–1616 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Vlassara, G.E. Striker, AGE restriction in diabetes mellitus: a paradigm shift. Nat. Rev. Endocrinol. 7, 526–539 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Luevano-Contreras, M.E. Garay-Sevilla, K. Wrobel, J.M. Malacara, K. Wrobel, Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. J. Clin. Biochem. Nutr. 52, 22–26 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. A. Puddu, R. Sanguineti, A. Durante, A. Nencioni, F. Mach, F. Montecucco, G.L. Viviani, Glucagon-like peptide-1 triggers protective pathways in pancreatic beta-cells exposed to glycated serum. Mediat. Inflamm. 2013, 317120 (2013)

    Google Scholar 

  18. T. Shu, Y. Zhu, H. Wang, Y. Lin, Z. Ma, X. Han, AGEs decrease insulin synthesis in pancreatic beta-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS ONE 6, e18782 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Zhu, T. Shu, Y. Lin, H. Wang, J. Yang, Y. Shi, X. Han, Inhibition of the receptor for advanced glycation end products (RAGE) protects pancreatic beta-cells. Biochem. Biophys. Res. Commun. 404, 159–165 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. L. Jiang, J.H. Hickman, S.J. Wang, W. Gu, Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses. Cell Cycle 14, 2881–2885 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. Sen, Y.K. Satija, S. Das, PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell 44, 621–634 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. S.E. Thomas, E. Malzer, A. Ordonez, L.E. Dalton, E.F. van ‘t Wout, E. Liniker, D.C. Crowther, D.A. Lomas, S.J. Marciniak, p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress. J. Biol. Chem. 288, 7606–7617 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Oren, Decision making by p53: life, death and cancer. Cell Death Differ. 10, 431–442 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Z. Li, M. Ni, J. Li, Y. Zhang, Q. Ouyang, C. Tang, Decision making of the p53 network: death by integration. J. Theor. Biol. 271, 205–211 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. S. Zhang, J. Liu, E.L. Saafi, G.J. Cooper, Induction of apoptosis by human amylin in RINm5F islet beta-cells is associated with enhanced expression of p53 and p21WAF1/CIP1. FEBS Lett. 455, 315–320 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. P. Lovis, E. Roggli, D.R. Laybutt, S. Gattesco, J.Y. Yang, C. Widmann, A. Abderrahmani, R. Regazzi, Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57, 2728–2736 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Yuan, X. Zhang, X. Huang, Y. Lu, W. Tang, Y. Man, S. Wang, J. Xi, J. Li, NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE 5, e15726 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. V.B. Cismasiu, J. Duque, E. Paskaleva, D. Califano, S. Ghanta, H.A. Young, D. Avram, BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem. J. 417, 457–466 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Lin, X. Tang, Y. Zhu, T. Shu, X. Han, Identification of PARP-1 as one of the transcription factors binding to the repressor element in the promoter region of COX-2. Arch. Biochem. Biophys. 505, 123–129 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. S.D. Varma, P.S. Devamanoharan, A.H. Ali, Formation of advanced glycation end (AGE) products in diabetes: prevention by pyruvate and alpha-ketoglutarate. Mol. Cell. Biochem. 171, 23–28 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. L.B. Lingelbach, A.E. Mitchell, R.B. Rucker, R.B. McDonald, Accumulation of advanced glycation end products in aging male Fischer 344 rats during long-term feeding of various dietary carbohydrates. J. Nutr. 130, 1247–1255 (2000)

    CAS  PubMed  Google Scholar 

  32. Z. Zhao, C. Zhao, X.H. Zhang, F. Zheng, W. Cai, H. Vlassara, Z.A. Ma, Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology 150, 2569–2576 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M.T. Coughlan, F.Y. Yap, D.C. Tong, S. Andrikopoulos, A. Gasser, V. Thallas-Bonke, D.E. Webster, J. Miyazaki, T.W. Kay, R.M. Slattery, D.M. Kaye, B.G. Drew, B.A. Kingwell, S. Fourlanos, P.H. Groop, L.C. Harrison, M. Knip, J.M. Forbes, Advanced glycation end products are direct modulators of beta-cell function. Diabetes 60, 2523–2532 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Zhu, A. Ma, H. Zhang, C. Li, PPARgamma activation attenuates glycated-serum induced pancreatic beta-cell dysfunction through enhancing Pdx1 and Mafa protein stability. PLoS ONE 8, e56386 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge QM, Dong Y, Su Q. Effects of glucose and advanced glycation end products on oxidative stress in MIN6 cells. Cell Mol Biol (Noisy-le-grand). 2010; 56 Suppl: OL1231-8

  36. A.K. Mohamed, A. Bierhaus, S. Schiekofer, H. Tritschler, R. Ziegler, P.P. Nawroth, The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 10, 157–167 (1999)

    Article  CAS  PubMed  Google Scholar 

  37. K.C. Lan, C.Y. Chiu, C.W. Kao, K.H. Huang, C.C. Wang, K.T. Huang, K.S. Tsai, M.L. Sheu, S.H. Liu, Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-kappaB-activated cyclooxygenase-2/prostaglandin E2 up-regulation. PLoS ONE 10, e0124418 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  38. D. Melloul, Role of NF-kappaB in beta-cell death. Biochem. Soc. Trans. 36, 334–339 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. C. Arous, P.G. Ferreira, E.T. Dermitzakis, P.A. Halban, Short term exposure of beta cells to low concentrations of interleukin-1beta improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J. Biol. Chem. 290, 6653–6669 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Cnop, N. Welsh, J.C. Jonas, A. Jorns, S. Lenzen, D.L. Eizirik, Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2), S97–S107 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. M.Y. Donath, J. Storling, K. Maedler, T. Mandrup-Poulsen, Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. 81, 455–470 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. I. Rakatzi, H. Mueller, O. Ritzeler, N. Tennagels, J. Eckel, Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia 47, 249–258 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. K. Maedler, P. Sergeev, F. Ris, J. Oberholzer, H.I. Joller-Jemelka, G.A. Spinas, N. Kaiser, P.A. Halban, M.Y. Donath, Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. I. Kharroubi, L. Ladriere, A.K. Cardozo, Z. Dogusan, M. Cnop, D.L. Eizirik, Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145, 5087–5096 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. J. Buteau, W. El-Assaad, C.J. Rhodes, L. Rosenberg, E. Joly, M. Prentki, Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47, 806–815 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. F. Xin, L. Jiang, X. Liu, C. Geng, W. Wang, L. Zhong, G. Yang, M. Chen, Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 769, 29–33 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. S. Tornovsky-Babeay, D. Dadon, O. Ziv, E. Tzipilevich, T. Kadosh, R. Schyr-Ben Haroush, A. Hija, M. Stolovich-Rain, J. Furth-Lavi, Z. Granot, S. Porat, L.H. Philipson, K.C. Herold, T.R. Bhatti, C. Stanley, F.M. Ashcroft, P. In’t Veld, A. Saada, M.A. Magnuson, B. Glaser, Y. Dor, Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in beta cells. Cell Metab. 19, 109–121 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. D.A. Cunha, M. Igoillo-Esteve, E.N. Gurzov, C.M. Germano, N. Naamane, I. Marhfour, M. Fukaya, J.M. Vanderwinden, C. Gysemans, C. Mathieu, L. Marselli, P. Marchetti, H.P. Harding, D. Ron, D.L. Eizirik, M. Cnop, Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human beta-cell apoptosis. Diabetes 61, 2763–2775 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O.D. Maddocks, C.R. Berkers, S.M. Mason, L. Zheng, K. Blyth, E. Gottlieb, K.H. Vousden, Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. C. Evans-Molina, R.D. Robbins, T. Kono, S.A. Tersey, G.L. Vestermark, C.S. Nunemaker, J.C. Garmey, T.G. Deering, S.R. Keller, B. Maier, R.G. Mirmira, Peroxisome proliferator-activated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol. Cell. Biol. 29, 2053–2067 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. K.K. Brown, B.R. Henke, S.G. Blanchard, J.E. Cobb, R. Mook, I. Kaldor, S.A. Kliewer, J.M. Lehmann, J.M. Lenhard, W.W. Harrington, P.J. Novak, W. Faison, J.G. Binz, M.A. Hashim, W.O. Oliver, H.R. Brown, D.J. Parks, K.D. Plunket, W.Q. Tong, J.A. Menius, K. Adkison, S.A. Noble, T.M. Willson, A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-gamma reverses the diabetic phenotype of the Zucker diabetic fatty rat. Diabetes 48, 1415–1424 (1999)

    Article  CAS  PubMed  Google Scholar 

  52. J.S. Wu, T.N. Lin, K.K. Wu, Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J. Cell. Physiol. 220, 58–71 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. Y. Ren, C. Sun, Y. Sun, H. Tan, Y. Wu, B. Cui, Z. Wu, PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul. Pharmacol. 51, 169–174 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. J.C. Strum, R. Shehee, D. Virley, J. Richardson, M. Mattie, P. Selley, S. Ghosh, C. Nock, A. Saunders, A. Roses, Rosiglitazone induces mitochondrial biogenesis in mouse brain. J. Alzheimers Dis. 11, 45–51 (2007)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from (1) the National Natural Science Foundation of China (81420108007) and the National Basic Research Program of China (973 Program, 2012CB524903) to XH, (2) the National Natural Science Foundation of China (81200559) to YZ, and (3) the National Natural Science Foundation of China (81472989) to HZ. XH is a Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Zhu or X. Han.

Ethics declarations

Conflict of interest

The authors took part in the conception and design of the study, as well as either drafting or critically revising the manuscript. The authors have approved the final version of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

12020_2016_979_MOESM2_ESM.tif

Supplemental Figure 1 Analysis of transcriptional activities with GS treatment. INS-1 cells were co-transfected with Myc-luc, ARE-luc, Rb-luc, AP-1-luc, NF-κB-luc and pRL-CMV (10:1) constructs for 24 h, followed by treatment with NG or 10 % GS for a further 24 h. Lysates were harvested for the dual-luciferase reporter assay. The firefly luciferase activity representing report genes activity was normalized to the Renilla activity. The data represent three separate experiments. **p<0.01 versus NG (TIFF 346 kb)

12020_2016_979_MOESM3_ESM.tif

Supplemental Figure 2 p53 binding specificity examination. INS-1 cells were in the presence of NG or 10 % GS for 2 h, and then, nuclear proteins were extracted for EMSA assay. (a) Unlabeled p53 probe was used to identify the binding specificity. (b) An anti-p53 antibody was used to identify the binding specificity (TIFF 2822 kb)

Supplementary material 4 (TIFF 3468 kb)

Supplementary material 5 (TIFF 2133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, T., Huang, Q. et al. Inhibition of tumor suppressor p53 preserves glycation-serum induced pancreatic beta-cell demise. Endocrine 54, 383–395 (2016). https://doi.org/10.1007/s12020-016-0979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0979-5

Keywords

Navigation