Skip to main content

Advertisement

Log in

Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Diabetic nephropathy as the primary cause of end-stage renal disease reveals an increased incidence in patients with kidney disease as the continuous rising of type 2 diabetes. Long non-coding RNAs (lncRNAs) are involved in the development of many diseases including diabetes; however, the role of lncRNAs in diabetic nephropathy is still unclear. In the present study, lncRNA microarray analysis was used to identify abnormally expressed lncRNAs and nearby mRNAs in renal cortical tissues dissected from kidney of db/db and db/m mice. After verifying the data from microarray analysis by quantitative RT-PCR, downregulated ENSMUST00000147869 associated with Cyp4a12a was selected for overexpression in mouse mesangial cells among differentially expressed lncRNAs. Cell Counting Kit-8, Western blotting, and quantitative RT-PCR showed that proliferation and fibrosis indexes were reversed in mesangial cells with ENSMUST00000147869 overexpression. Our data suggested the potential role of ENSMUST00000147869 in proliferation and fibrosis of mesangial cells, which provided a molecular biomarker and therapeutic target for diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.E. Shaw, R.A. Sicree, P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87(1), 4–14 (2010). doi:10.1016/j.diabres.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  2. W. Yang, J. Lu, J. Weng, W. Jia, L. Ji, J. Xiao, Z. Shan, J. Liu, H. Tian, Q. Ji, D. Zhu, J. Ge, L. Lin, L. Chen, X. Guo, Z. Zhao, Q. Li, Z. Zhou, G. Shan, J. He, Prevalence of diabetes among men and women in China. N. Engl. J. Med. 362(12), 1090–1101 (2010). doi:10.1056/NEJMoa0908292

    Article  CAS  PubMed  Google Scholar 

  3. R. Lehmann, E.D. Schleicher, Molecular mechanism of diabetic nephropathy. Clin. Chim. Acta Int. J. Chem. 297(1–2), 135–144 (2000)

    Article  CAS  Google Scholar 

  4. M.K. Arora, U.K. Singh, Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul. Pharmacol. 58(4), 259–271 (2013). doi:10.1016/j.vph.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  5. Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012). doi:10.1038/nature11247

    Article  Google Scholar 

  6. C.P. Ponting, P.L. Oliver, W. Reik, Evolution and functions of long noncoding RNAs. Cell 136(4), 629–641 (2009). doi:10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  7. M.C. Tsai, O. Manor, Y. Wan, N. Mosammaparast, J.K. Wang, F. Lan, Y. Shi, E. Segal, H.Y. Chang, Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992), 689–693 (2010). doi:10.1126/science.1192002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.E. Dinger, D.K. Gascoigne, J.S. Mattick, The evolution of RNAs with multiple functions. Biochimie 93(11), 2013–2018 (2011). doi:10.1016/j.biochi.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  9. H. Chen, O. Charlat, L.A. Tartaglia, E.A. Woolf, X. Weng, S.J. Ellis, N.D. Lakey, J. Culpepper, K.J. Moore, R.E. Breitbart, G.M. Duyk, R.I. Tepper, J.P. Morgenstern, Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3), 491–495 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. G. Fantuzzi, R. Faggioni, Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol. 68(4), 437–446 (2000)

    CAS  PubMed  Google Scholar 

  11. L. Zhang, S. He, S. Guo, W. Xie, R. Xin, H. Yu, F. Yang, J. Qiu, D. Zhang, S. Zhou, K. Zhang, Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. J. Diabetes Complic 28(3), 259–264 (2014). doi:10.1016/j.jdiacomp.2014.01.002

    Article  Google Scholar 

  12. L. Mahimainathan, F. Das, B. Venkatesan, G.G. Choudhury, Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55(7), 2115–2125 (2006). doi:10.2337/db05-1326

    Article  CAS  PubMed  Google Scholar 

  13. X. Zhu, Y. Guo, S. Yao, Q. Yan, M. Xue, T. Hao, F. Zhou, J. Zhu, D. Qin, C. Lu, Synergy between Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. Oncogene 33(15), 1986–1996 (2014). doi:10.1038/onc.2013.136

    Article  CAS  PubMed  Google Scholar 

  14. F. Zhou, M. Xue, D. Qin, X. Zhu, C. Wang, J. Zhu, T. Hao, L. Cheng, X. Chen, Z. Bai, N. Feng, S.J. Gao, C. Lu, HIV-1 Tat promotes Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3 K/PTEN/AKT/GSK-3beta signaling pathway. PLoS ONE 8(1), e53145 (2013). doi:10.1371/journal.pone.0053145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Fujii, N. Ohno, Z. Li, N. Terada, T. Baba, S. Ohno, Morphological and histochemical analyses of living mouse livers by new ‘cryobiopsy’ technique. J. Electron Microsc. 55(2), 113–122 (2006). doi:10.1093/jmicro/dfl018

    Article  CAS  Google Scholar 

  16. R.M. Mason, N.A. Wahab, Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. JASN 14(5), 1358–1373 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. A. Sapru, S.E. Gitelman, S. Bhatia, R.F. Dubin, T.B. Newman, H. Flori, Prevalence and characteristics of type 2 diabetes mellitus in 9–18 year-old children with diabetic ketoacidosis. J. Pediatr. Endocrinol. Metab. JPEM 18(9), 865–872 (2005)

    PubMed  Google Scholar 

  18. M. Zaratiegui, D.V. Irvine, R.A. Martienssen, Noncoding RNAs and gene silencing. Cell 128(4), 763–776 (2007). doi:10.1016/j.cell.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  19. M. Kato, J.T. Park, R. Natarajan, MicroRNAs and the glomerulus. Exp. Cell Res. 318(9), 993–1000 (2012). doi:10.1016/j.yexcr.2012.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M.S. Cunnington, M. Santibanez Koref, B.M. Mayosi, J. Burn, B. Keavney, Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6(4), e1000899 (2010). doi:10.1371/journal.pgen.1000899

    Article  PubMed  PubMed Central  Google Scholar 

  21. B. Yan, J. Yao, J.Y. Liu, X.M. Li, X.Q. Wang, Y.J. Li, Z.F. Tao, Y.C. Song, Q. Chen, Q. Jiang, lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res. 116(7), 1143–1156 (2015). doi:10.1161/CIRCRESAHA.116.305510

    Article  CAS  PubMed  Google Scholar 

  22. D. Ma, J.P. Shield, W. Dean, I. Leclerc, C. Knauf, R.R. Burcelin, G.A. Rutter, G. Kelsey, Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J. Clin. Investig. 114(3), 339–348 (2004). doi:10.1172/JCI19876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R.J. Gardner, D.J. Mackay, A.J. Mungall, C. Polychronakos, R. Siebert, J.P. Shield, I.K. Temple, D.O. Robinson, An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 9(4), 589–596 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. D.P. Caley, R.C. Pink, D. Trujillano, D.R. Carter, Long noncoding RNAs, chromatin, and development. Sci. World J. 10, 90–102 (2010). doi:10.1100/tsw.2010.7

    Article  CAS  Google Scholar 

  25. M. Kato, S. Putta, M. Wang, H. Yuan, L. Lanting, I. Nair, A. Gunn, Y. Nakagawa, H. Shimano, I. Todorov, J.J. Rossi, R. Natarajan, TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11(7), 881–889 (2009). doi:10.1038/ncb1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Z. Zhang, H. Peng, J. Chen, X. Chen, F. Han, X. Xu, X. He, N. Yan, MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 583(12), 2009–2014 (2009). doi:10.1016/j.febslet.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  27. N. Dey, N. Ghosh-Choudhury, F. Das, X. Li, B. Venkatesan, J.L. Barnes, B.S. Kasinath, G. Ghosh Choudhury, PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy. J. Cell. Physiol. 225(1), 27–41 (2010). doi:10.1002/jcp.22186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. X. Zhao, J.D. Imig, Kidney CYP450 enzymes: biological actions beyond drug metabolism. Curr. Drug Metab. 4(1), 73–84 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. J.P. Hardwick, D. Osei-Hyiaman, H. Wiland, M.A. Abdelmegeed, B.J. Song, PPAR/RXR regulation of fatty acid metabolism and fatty acid omega-hydroxylase (CYP4) isozymes: implications for prevention of lipotoxicity in fatty liver disease. PPAR Res. 2009, 952734 (2009). doi:10.1155/2009/952734

    PubMed  Google Scholar 

  30. Y. Zhang, C.D. Klaassen, Hormonal regulation of Cyp4a isoforms in mouse liver and kidney. Xenobiotica 43(12), 1055–1063 (2013). doi:10.3109/00498254.2013.797622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K.M. Lukaszewicz, J.H. Lombard, Role of the CYP4A/20-HETE pathway in vascular dysfunction of the Dahl salt-sensitive rat. Clin. Sci. 124(12), 695–700 (2013). doi:10.1042/CS20120483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Qi, L. Meng, Y. Li, Y. Qu, Arterial carbon dioxide partial pressure influences CYP4A distribution in the rat brain. Histol. Histopathol. 27(7), 897–903 (2012)

    CAS  PubMed  Google Scholar 

  33. D.N. Muller, C. Schmidt, E. Barbosa-Sicard, M. Wellner, V. Gross, H. Hercule, M. Markovic, H. Honeck, F.C. Luft, W.H. Schunck, Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochem. J. 403(1), 109–118 (2007). doi:10.1042/BJ20061328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chun Lu and Department of Microbiology, Nanjing Medical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Yan or Weiping Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Min Wang, Di Yao and Suyu Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yao, D., Wang, S. et al. Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy. Endocrine 54, 81–92 (2016). https://doi.org/10.1007/s12020-016-0950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0950-5

Keywords

Navigation