Skip to main content
Log in

The prevalence and predictive value of the SLC30A8 R325W polymorphism and zinc transporter 8 autoantibodies in the development of GDM and postpartum type 1 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The objectives were to evaluate possible associations between the SLC30A8 R325W polymorphism and gestational diabetes mellitus (GDM) as well as postpartum development of type 2 diabetes. Furthermore, we wanted to confirm the prevalence of zinc transporter 8 autoantibodies (ZnT8A), as previously reported, in a larger population and study its predictive value in relation to other β cell specific autoantibodies in postpartum development of type 1 diabetes. Women diagnosed with GDM (n = 776) and women without diabetes (n = 511) were included in the study. Autoantibodies were analyzed in all women using enzyme-linked immunosorbent assay. DNA was extracted when possible from women with GDM (n = 536) and all of the controls. R325W was detected through polymerase chain reaction and specific restriction digestion. The R325W C-allele were more frequent in women with GDM compared to in controls (OR 1.47, 95 % CI 1.16–1.88, p = 0.0018) but not significantly increased in women with GDM and postpartum development of type 2 diabetes. Autoantibodies were found in 6.8 % (53/776) of the women with GDM and approximately 3.2 % (25/776) were ZnT8A positive. Approximately 19 % (10/53) of the autoantibody positive women with GDM developed postpartum type 1 diabetes. In conclusion, this is the first study to report a significant association between the R325W C-allele and increased risk of developing GDM. All of the autoantibody positive women with GDM who developed postpartum type 1 diabetes were positive for autoantibodies against glutamic acid decarboxylase (GADA). Thus ZnT8A did not have any additional predictive value in postpartum development of type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.O. Emdin, G.G. Dodson, J.M. Cutfield, S.M. Cutfield, Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia. 19, 174–182 (1980)

    Article  CAS  PubMed  Google Scholar 

  2. F. Chimienti, S. Devergnas, A. Favier, M. Seve, Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 53, 2330–2337 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. H. Schneider, J. Downey, A. Smith, B.H. Zinselmeyer, C. Rush, J.M. Brewer, B. Wei, N. Hogg, P. Garside, C.E. Rudd, Reversal of the TCR stop signal by CTLA-4. Science. 313, 1972–1975 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T.J. Hudson, A. Montpetit, A.V. Pshezhetsky, M. Prentki, B.I. Posner, D.J. Balding, D. Meyre, C. Polychronakos, P. Froguel, A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 445, 881–885 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. T.W. Boesgaard, J. Zilinskaite, M. Vanttinen, M. Laakso, P.A. Jansson, A. Hammarstedt, U. Smith, N. Stefan, A. Fritsche, H. Haring, M. Hribal, G. Sesti, D.P. Zobel, O. Pedersen, T. Hansen, Consortium E2008The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients–the EUGENE2 study. Diabetologia. 51, 816–820 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. S. Cauchi, C. Proenca, H. Choquet, S. Gaget, Graeve F. De, M. Marre, B. Balkau, J. Tichet, D. Meyre, M. Vaxillaire, P. Froguel, Group DESIRS. Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86, 341–348 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. K. Kirchhoff, F. Machicao, A. Haupt, S.A. Schafer, O. Tschritter, H. Staiger, N. Stefan, H.U. Haring, A. Fritsche, Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 51, 597–601 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. G. Chauhan, C.J. Spurgeon, R. Tabassum, S. Bhaskar, S.R. Kulkarni, A. Mahajan, S. Chavali, M.V.K. Kumar, S. Prakash, O.P. Dwivedi, S. Ghosh, C.S. Yajnik, N. Tandon, D. Bharadwaj, G.R. Chandak, Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 59, 2068–2074 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M.A. Gamboa-Meléndez, A. Huerta-Chagoya, H. Moreno-Macías, P. Vázquez-Cárdenas, M.L. Ordóñez-Sánchez, R. Rodríguez-Guillén, L. Riba, M. Rodríguez-Torres, M.T. Guerra-García, L.E. Guillén-Pineda, S. Choudhry, L. Del Bosque-Plata, S. Canizales-Quinteros, G. Pérez-Ortiz, F. Escobedo-Aguirre, A. Parra, I. Lerman-Garber, C.A. Aguilar-Salinas, M.T. Tusié-Luna, Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes. 61, 3314–3321 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Y.-H. Lee, E.S. Kang, S.H. Kim, S.J. Han, C.H. Kim, H.J. Kim, C.W. Ahn, B.S. Cha, M. Nam, C.M. Nam, H.C. Lee, Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J. Hum. Genet. 53, 991–998 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. L.J. Scott, K.L. Mohlke, L.L. Bonnycastle, C.J. Willer, Y. Li, W.L. Duren, M.R. Erdos, H.M. Stringham, P.S. Chines, A.U. Jackson, L. Prokunina-Olsson, C.-J. Ding, A.J. Swift, N. Narisu, T. Hu, R. Pruim, R. Xiao, X.-Y. Li, K.N. Conneely, N.L. Riebow, A.G. Sprau, M. Tong, P.P. White, K.N. Hetrick, M.W. Barnhart, C.W. Bark, J.L. Goldstein, L. Watkins, F. Xiang, J. Saramies, T.A. Buchanan, R.M. Watanabe, T.T. Valle, L. Kinnunen, G.R. Abecasis, E.W. Pugh, K.F. Doheny, R.N. Bergman, J. Tuomilehto, F.S. Collins, M. Boehnke, A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 316, 1341–1345 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Tabara, H. Osawa, R. Kawamoto, H. Onuma, I. Shimizu, T. Miki, K. Kohara, H. Makino, Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes. 58, 493–498 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C. Brorsson, R. Bergholdt, M. Sjögren, S. Eising, K.M. Sørensen, D.M. Hougaard, M. Orho-Melander, L. Groop, F. Pociot, A non-synonymous variant in SLC30A8 is not associated with type 1 diabetes in the Danish population. Mol. Genet. Metab. 94, 386–388 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. S.M. Raj, J.M.M. Howson, N.M. Walker, J.D. Cooper, D.J. Smyth, S.F. Field, H.E. Stevens, J.A. Todd, No association of multiple type 2 diabetes loci with type 1 diabetes. Diabetologia. 52, 2109–2116 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Ekelund, N. Shaat, P. Almgren, E. Anderberg, M. Landin-Olsson, V. Lyssenko, L. Groop, K. Berntorp, Genetic prediction of postpartum diabetes in women with gestational diabetes mellitus. Diabetes. Res. Clin. Pract. 97, 394–398 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. J.M. Wenzlau, K. Juhl, L. Yu, O. Moua, S.A. Sarkar, P. Gottlieb, M. Rewers, G.S. Eisenbarth, J. Jensen, H.W. Davidson, J.C. Hutton, The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl. Acad. Sci. 104, 17040–17045 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Li, H. Li, B. Chen, D. Lu, W. Deng, Y. Jiang, Z. Zhou, Z. Yang, Identification of novel HLA-A*0201-restricted cytotoxic T lymphocyte epitopes from zinc transporter 8. Vaccine. 31, 1610–1615 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. M. Scotto, G. Afonso, E. Larger, C. Raverdy, F.A. Lemonnier, J.C. Carel, D. Dubois-Laforgue, B. Baz, D. Levy, J.F. Gautier, O. Launay, G. Bruno, C. Boitard, L.A. Sechi, J.C. Hutton, H.W. Davidson, R. Mallone, Zinc transporter (ZnT)8 (186–194) is an immunodominant CD8 + T cell epitope in HLA-A2 + type 1 diabetic patients. Diabetologia. 55, 2026–2031 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Achenbach, V. Lampasona, U. Landherr, K. Koczwara, S. Krause, H. Grallert, C. Winkler, M. Pflüger, T. Illig, E. Bonifacio, A.G. Ziegler, Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia. 52, 1881–1888 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. C. Andersson, F. Vaziri-Sani, A. Delli, B. Lindblad, A. Carlsson, G. Forsander, J. Ludvigsson, C. Marcus, U. Samuelsson, S. Ivarsson, A. Lernmark, H.E. Larsson, Triple specificity of ZnT8 autoantibodies in relation to HLA and other islet autoantibodies in childhood and adolescent type 1 diabetes. Pediatric. Diabetes. 14, 97–105 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. G. Huang, Y. Xiang, L. Pan, X. Li, S. Luo, Z. Zhou, Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes. Metab. Res. Rev. 29(5), 363–368 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. V. Lampasona, A. Petrone, C. Tiberti, M. Capizzi, M. Spoletini, S. di Pietro, M. Songini, S. Bonicchio, F. Giorgino, E. Bonifacio, E. Bosi, R. Buzzetti, D. NIRA, Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes non insulin requiring autoimmune diabetes (NIRAD) 4. Diabetes. Care. 33, 104–108 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. F.K. Gorus, E.V. Balti, I. Vermeulen, S. Demeester, Dalem A. Van, O. Costa, H. Dorchy, S. Tenoutasse, T. Mouraux, Block C. De, P. Gillard, K. Decochez, J.M. Wenzlau, J.C. Hutton, D.G. Pipeleers, I. Weets, Belgian Diabetes R., Screening for insulinoma antigen 2 and zinc transporter 8 autoantibodies: a cost-effective and age-independent strategy to identify rapid progressors to clinical onset among relatives of type 1 diabetic patients. Clin. Exp. Immunol. 171, 82–90 (2012)

    Article  PubMed Central  Google Scholar 

  24. C. Ignell, R. Claesson, E. Anderberg, K. Berntorp, Trends in the prevalence of gestational diabetes mellitus in southern Sweden, 2003–2012. Acta. Obstet. Gynecol. Scand. 93, 420–424 (2014)

    Article  PubMed  Google Scholar 

  25. C. Nilsson, D. Ursing, C. Törn, A. Åberg, M. Landin-Olsson, Presence of GAD antibodies during gestational diabetes mellitus predicts type 1 diabetes. Diabetes. Care. 30, 1968–1971 (2007)

    Article  PubMed  Google Scholar 

  26. J. Dereke, C. Nilsson, M. Landin-Olsson, M. Hillman, Prevalence of zinc transporter 8 antibodies in gestational diabetes mellitus. Diabet. Med. 29, e436–e439 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. T. Lind, P.R. Phillips, Influence of pregnancy on the 75-g OGTT. A prospective multicenter study. The diabetic pregnancy study group of the European Association for the Study of Diabetes. Diabetes. 40(Suppl 2), 8–13 (1991)

    Article  PubMed  Google Scholar 

  28. C. Nilsson, C. Andersson, D. Ursing, H. Strevens, M. Landin-Olsson, Outcomes of women with gestational diabetes mellitus in Sweden. Eur. J. Obstet. Gynecol. Reprod. Biol. 193, 132–135 (2015)

    Article  PubMed  Google Scholar 

  29. S.A. Miller, D.D. Dykes, H.F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. Acids. Res. 16, 1215 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Q. Huang, J.Y. Yin, X.P. Dai, J. Wu, X. Chen, C.S. Deng, M. Yu, Z.C. Gong, H.H. Zhou, Z.Q. Liu, Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. Eur. J. Clin. Pharmacol. 66, 1207–1215 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. J. Lauenborg, N. Grarup, P. Damm, K. Borch-Johnsen, T. Jorgensen, O. Pedersen, T. Hansen, Common type 2 diabetes risk gene variants associate with gestational diabetes. J. Clin. Endocrinol. Metab. 94, 145–150 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Birgitte Ekholm for her excellent technical assistance in the research laboratory. The authors would also like to thank Carl and Erik Olsson for their invaluable help with the extraction of DNA. This study was supported by grants from the Swedish Medical Research Council and the Swedish Diabetes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonatan Dereke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereke, J., Palmqvist, S., Nilsson, C. et al. The prevalence and predictive value of the SLC30A8 R325W polymorphism and zinc transporter 8 autoantibodies in the development of GDM and postpartum type 1 diabetes. Endocrine 53, 740–746 (2016). https://doi.org/10.1007/s12020-016-0932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0932-7

Keywords

Navigation