Skip to main content

Advertisement

Log in

Impaired immune regulation after radioiodine therapy for Graves’ disease and the protective effect of Methimazole

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Both therapies for Graves’ disease (GD), radioactive iodine (RAI) and antithyroid drugs (ATD), were reported to have specific immune effects. We aimed at investigating the effects of RAI therapy on cellular subsets involved in immune regulation. We conducted a thirty day follow-up prospective cohort study of adult patients. Patients eligible for RAI therapy at our centre were approached. Twenty seven patients with GD were recruited, among whom 11 were treated with ATD. Twenty-two healthy subjects (HS) were also studied. Over time, frequency of regulatory T cells (Treg) and of invariant natural killer T cells (iNKT), along with Treg cell-mediated suppression and underlying mechanisms, were monitored in the peripheral blood. Variance in frequency of Treg and iNKT after RAI therapy was higher in GD patients than in HS over time (p < 0.0001). Reduced Treg suppressive function was observed after RAI therapy in GD patients (p = 0.002). ATD medication prior to RAI dampened these outcomes: less variation of Treg frequency (p = 0.0394), a trend toward less impaired Treg function, and prevention of reduced levels of suppressive cytokines (p < 0.05). Shortly after RAI therapy, alterations in immunoregulatory cells in patients with GD were observed and partially prevented by an ATD pretreatment. Worsening of autoimmunity after RAI was explained in previous studies by enhanced immune activity. This study adds new highlights on immune regulation deficiencies after therapeutic interventions in thyroid autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Rapoport, G.D. Chazenbalk, J.C. Jaume, S.M. McLachlan, The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr. Rev. 19(6), 673–716 (1998)

    CAS  PubMed  Google Scholar 

  2. R.S. Bahn, C.M. Dutton, W. Joba, A.E. Heufelder, Thyrotropin receptor expression in cultured Graves’ orbital preadipocyte fibroblasts is stimulated by thyrotropin. Thyroid 8(2), 193–196 (1998)

    Article  CAS  PubMed  Google Scholar 

  3. R.S. Bahn, Graves’ ophthalmopathy. N. Engl. J. Med. 362(8), 726–738 (2010). doi:10.1056/NEJMra0905750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Sakaguchi, Naturally arising CD4 + regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004). doi:10.1146/annurev.immunol.21.120601.141122

    Article  CAS  PubMed  Google Scholar 

  5. D.I. Godfrey, M. Kronenberg, Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114(10), 1379–1388 (2004). doi:10.1172/JCI23594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Marazuela, M.A. Garcia-Lopez, N. Figueroa-Vega, H. de la Fuente, B. Alvarado-Sanchez, A. Monsivais-Urenda, F. Sanchez-Madrid, R. Gonzalez-Amaro, Regulatory T cells in human autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 91(9), 3639–3646 (2006). doi:10.1210/jc.2005-2337

    Article  CAS  PubMed  Google Scholar 

  7. M. Watanabe, Y. Nakamura, F. Matsuzuka, Y. Takamura, A. Miyauchi, Y. Iwatani, Decrease of intrathyroidal CD161 + Valpha24 + Vbeta11 + NKT cells in Graves’ disease. Endocr. J. 55(1), 199–203 (2008)

    Article  PubMed  Google Scholar 

  8. O. Saitoh, Y. Nagayama, Regulation of Graves’ hyperthyroidism with naturally occurring CD4 + CD25 + regulatory T cells in a mouse model. Endocrinology 147(5), 2417–2422 (2006). doi:10.1210/en.2005-1024

    Article  CAS  PubMed  Google Scholar 

  9. Y. Nagayama, K. Watanabe, M. Niwa, S.M. McLachlan, B. Rapoport, Schistosoma mansoni and alpha-galactosylceramide: prophylactic effect of Th1 Immune suppression in a mouse model of Graves’ hyperthyroidism. J. Immunol. 173(3), 2167–2173 (2011)

    Article  Google Scholar 

  10. C. Mao, S. Wang, Y. Xiao, J. Xu, Q. Jiang, M. Jin, X. Jiang, H. Guo, G. Ning, Y. Zhang, Impairment of regulatory capacity of CD4 + CD25 + regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J. Immunol. 186(8), 4734–4743 (2011). doi:10.4049/jimmunol.0904135

    Article  CAS  PubMed  Google Scholar 

  11. M. Klatka, E. Grywalska, M. Partyka, M. Charytanowicz, E. Kiszczak-Bochynska, J. Rolinski, Th17 and Treg cells in adolescents with Graves’ disease. Impact of treatment with methimazole on these cell subsets. Autoimmunity 47(3), 201–211 (2014). doi:10.3109/08916934.2013.879862

    Article  CAS  PubMed  Google Scholar 

  12. A.B. Glick, A. Wodzinski, P. Fu, A.D. Levine, D.N. Wald, Impairment of regulatory T-cell function in autoimmune thyroid disease. Thyroid 23(7), 871–878 (2013). doi:10.1089/thy.2012.0514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Pan, Y.H. Shin, G. Gopalakrishnan, J. Hennessey, L.J. De Groot, Regulatory T cells in Graves’ disease. Clin. Endocrinol. (Oxf) 71(4), 587–593 (2009). doi:10.1111/j.1365-2265.2009.03544.x

    Article  CAS  Google Scholar 

  14. C.R. Grant, R. Liberal, G. Mieli-Vergani, D. Vergani, M.S. Longhi, Regulatory T-cells in autoimmune diseases: challenges, controversies and–yet–unanswered questions. Autoimmun. Rev. 14(2), 105–116 (2015). doi:10.1016/j.autrev.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  15. C. Dejaco, C. Duftner, B. Grubeck-Loebenstein, M. Schirmer, Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117(3), 289–300 (2006). doi:10.1111/j.1365-2567.2005.02317.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. Seddiki, B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, A. Kelleher, Fazekas de St Groth, B.: Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203(7), 1693–1700 (2006). doi:10.1084/jem.20060468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J.D. Fontenot, M.A. Gavin, A.Y. Rudensky, Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat. Immunol. 4(4), 330–336 (2003). doi:10.1038/ni904

    Article  CAS  PubMed  Google Scholar 

  18. S. Hori, T. Nomura, S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609), 1057–1061 (2003). doi:10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  19. P. Dellabona, E. Padovan, G. Casorati, M. Brockhaus, A. Lanzavecchia, An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J. Exp. Med. 180(3), 1171–1176 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. S. Porcelli, C.E. Yockey, M.B. Brenner, S.P. Balk, Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J. Exp. Med. 178(1), 1–16 (1993)

    Article  CAS  PubMed  Google Scholar 

  21. H.J. van der Vliet, B.M. von Blomberg, N. Nishi, M. Reijm, A.E. Voskuyl, A.A. van Bodegraven, C.H. Polman, T. Rustemeyer, P. Lips, A.J. van den Eertwegh, G. Giaccone, R.J. Scheper, H.M. Pinedo, Circulating V(alpha24+) Vbeta11 + NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 100(2), 144–148 (2001). doi:10.1006/clim.2001.5060

    Article  PubMed  Google Scholar 

  22. A. Roman-Gonzalez, M.E. Moreno, J.M. Alfaro, F. Uribe, G. Latorre-Sierra, M.T. Rugeles, C.J. Montoya, Frequency and function of circulating invariant NKT cells in autoimmune diabetes mellitus and thyroid diseases in Colombian patients. Hum. Immunol. 70(4), 262–268 (2009). doi:10.1016/j.humimm.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  23. R. Volpe, The immunomodulatory effects of anti-thyroid drugs are mediated via actions on thyroid cells, affecting thyrocyte-immunocyte signalling: a review. Curr. Pharm. Des. 7(6), 451–460 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. A.M. McGregor, M.M. Petersen, S.M. McLachlan, P. Rooke, B.R. Smith, R. Hall, Carbimazole and the autoimmune response in Graves’ disease. N. Engl. J. Med. 303(6), 302–307 (1980). doi:10.1056/NEJM198008073030603

    Article  CAS  PubMed  Google Scholar 

  25. M. Klatka, L. Kaszubowska, E. Grywalska, M. Wasiak, L. Szewczyk, J. Foerster, M. Cyman, J. Rolinski, Treatment of Graves’ disease with methimazole in children alters the proliferation of Treg cells and CD3 + T lymphocytes. Folia Histochem. Cytobiol. 52(1), 69–77 (2014). doi:10.5603/FHC.2014.0008

    Article  PubMed  Google Scholar 

  26. L. Bartalena, C. Marcocci, F. Bogazzi, L. Manetti, M.L. Tanda, E. Dell’Unto, G. Bruno-Bossio, M. Nardi, M.P. Bartolomei, A. Lepri, G. Rossi, E. Martino, A. Pinchera, Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N. Engl. J. Med. 338(2), 73–78 (1998). doi:10.1056/NEJM199801083380201

    Article  CAS  PubMed  Google Scholar 

  27. L. Tallstedt, G. Lundell, O. Torring, G. Wallin, J.G. Ljunggren, H. Blomgren, A. Taube, Occurrence of ophthalmopathy after treatment for Graves’ hyperthyroidism. The Thyroid Study Group. N. Engl. J. Med. 326(26), 1733–1738 (1992). doi:10.1056/NEJM199206253262603

    Article  CAS  PubMed  Google Scholar 

  28. P. Laurberg, G. Wallin, L. Tallstedt, M. Abraham-Nordling, G. Lundell, O. Torring, TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur. J. Endocrinol. 158(1), 69–75 (2008). doi:10.1530/EJE-07-0450

    Article  CAS  PubMed  Google Scholar 

  29. D.S. Cooper, Antithyroid drugs. N. Engl. J. Med. 352(9), 905–917 (2005). doi:10.1056/NEJMra042972

    Article  CAS  PubMed  Google Scholar 

  30. V.A. Andrade, J.L. Gross, A.L. Maia, Serum thyrotropin-receptor autoantibodies levels after I therapy in Graves’ patients: effect of pretreatment with methimazole evaluated by a prospective, randomized study. Eur. J. Endocrinol. 151(4), 467–474 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. C.L. Bennett, J. Christie, F. Ramsdell, M.E. Brunkow, P.J. Ferguson, L. Whitesell, T.E. Kelly, F.T. Saulsbury, P.F. Chance, H.D. Ochs, The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27(1), 20–21 (2001). doi:10.1038/83713

    Article  CAS  PubMed  Google Scholar 

  32. W. Liu, A.L. Putnam, Z. Xu-Yu, G.L. Szot, M.R. Lee, S. Zhu, P.A. Gottlieb, P. Kapranov, T.R. Gingeras, B.F.S. Groth, C. Clayberger, D.M. Soper, S.F. Ziegler, J.S. Bluestone, CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203(7), 1701–1711 (2006). doi:10.1084/jem.20060772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M.O. Li, R.A. Flavell, Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 28(4), 468–476 (2008). doi:10.1016/j.immuni.2008.03.003

    Article  PubMed  Google Scholar 

  34. A.W. Kung, C.C. Yau, A. Cheng, The incidence of ophthalmopathy after radioiodine therapy for Graves’ disease: prognostic factors and the role of methimazole. J. Clin. Endocrinol. Metab. 79(2), 542–546 (1994). doi:10.1210/jcem.79.2.7913934

    CAS  PubMed  Google Scholar 

  35. J. Zhou, M. Bi, C. Fan, X. Song, R. Yang, S. Zhao, L. Li, Y. Li, W. Teng, Z. Shan, Regulatory T cells but not T helper 17 cells are modulated in an animal model of Graves’ hyperthyroidism. Clin. Exp. Med (2011). doi:10.1007/s10238-011-0137-6

    Google Scholar 

  36. A. Rodriguez-Munoz, M. Vitales-Noyola, A. Ramos-Levi, A. Serrano-Somavilla, R. Gonzalez-Amaro, M. Marazuela, Levels of regulatory T cells CD69NKG2D IL-10 are increased in patients with autoimmune thyroid disorders. Endocrine (2015). doi:10.1007/s12020-015-0662-2

    PubMed  Google Scholar 

  37. R. Gonzalez-Amaro, M. Marazuela, T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity. Endocrine (2015). doi:10.1007/s12020-015-0759-7

    Google Scholar 

  38. G. Afshan, N. Afzal, S. Qureshi, CD4 + CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin. Lab. 58(5–6), 567–571 (2012)

    PubMed  Google Scholar 

  39. J. Hua, S. Liang, X. Ma, T.J. Webb, J.P. Potter, Z. Li, The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity. PLoS One 6(11), e27038 (2011). doi:10.1371/journal.pone.0027038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Awwad, R.J. North, Sublethal, whole-body ionizing irradiation can be tumor promotive or tumor destructive depending on the stage of development of underlying antitumor immunity. Cancer Immunol. Immunother. 26(1), 55–60 (1988)

    Article  CAS  PubMed  Google Scholar 

  41. B.M. Jones, C.C. Kwok, A.W. Kung, Effect of radioactive iodine therapy on cytokine production in Graves’ disease: transient increases in interleukin-4 (IL-4), IL-6, IL-10, and tumor necrosis factor-alpha, with longer term increases in interferon-gamma production. J. Clin. Endocrinol. Metab. 84(11), 4106–4110 (1999). doi:10.1210/jcem.84.11.6128

    CAS  PubMed  Google Scholar 

  42. A. Antonelli, M. Rotondi, P. Fallahi, M. Grosso, G. Boni, S.M. Ferrari, P. Romagnani, M. Serio, G. Mariani, E. Ferrannini, Iodine-131 given for therapeutic purposes modulates differently interferon-gamma-inducible alpha-chemokine CXCL10 serum levels in patients with active Graves’ disease or toxic nodular goiter. J. Clin. Endocrinol. Metab. 92(4), 1485–1490 (2007). doi:10.1210/jc.2006-1571

    Article  CAS  PubMed  Google Scholar 

  43. M.D. Turowska, D. Turowski, J. Wysocka, F. Rogowski, The effects of radioiodine therapy on peripheral blood lymphocyte subpopulations in patients with Graves’ disease. Preliminary report. Nucl. Med. Rev. Cent. East Eur. 5(1), 35–38 (2002)

    PubMed  Google Scholar 

  44. C. Asseman, S. Mauze, M.W. Leach, R.L. Coffman, F. Powrie, An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190(7), 995–1004 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. K.A. Ponto, S. Zang, G.J. Kahaly, The tale of radioiodine and Graves’ orbitopathy. Thyroid 20(7), 785–793 (2010). doi:10.1089/thy.2010.1640

    Article  CAS  PubMed  Google Scholar 

  46. G. Beriou, C.M. Costantino, C.W. Ashley, L. Yang, V.K. Kuchroo, C. Baecher-Allan, D.A. Hafler, IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18), 4240–4249 (2009). doi:10.1182/blood-2008-10-183251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A.M. Thornton, E.M. Shevach, CD4 + CD25 + immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188(2), 287–296 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. T. Takahashi, Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, J. Shimizu, S. Sakaguchi, Immunologic self-tolerance maintained by CD25 + CD4 + naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10(12), 1969–1980 (1998)

    Article  CAS  PubMed  Google Scholar 

  49. H. Jonuleit, E. Schmitt, M. Stassen, A. Tuettenberg, J. Knop, A.H. Enk, Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193(11), 1285–1294 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. F. Bogazzi, E. Martino, L. Bartalena, Antithyroid drug treatment prior to radioiodine therapy for Graves’ disease: yes or no? J. Endocrinol. Invest. 26(2), 174–176 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. G.M. Shi, Q. Xu, C.Y. Zhu, Y.L. Yang, Influence of propylthiouracil and methimazole pre-treatment on the outcome of iodine-131 therapy in hyperthyroid patients with Graves’ disease. J. Int. Med. Res. 37(2), 576–582 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all subjects and physicians at the Sherbrooke University Hospital for their contribution to the study. This work was supported by research funds of the Faculty of Medicine, the Clinical Research Center, the Department of Pediatrics at Sherbrooke University and grants from the Québec’s Health Research Funds (FRQS). Special thanks to Jana Stankova and Françoise Le Deist for excellent technical advice and to Patrick McDonald for providing healthy control samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Rottembourg.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 647 kb)

Supplementary material 2 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Côté-Bigras, S., Tran, V., Turcotte, S. et al. Impaired immune regulation after radioiodine therapy for Graves’ disease and the protective effect of Methimazole. Endocrine 52, 587–596 (2016). https://doi.org/10.1007/s12020-015-0832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0832-2

Keywords

Navigation