Skip to main content
Log in

A combination of immunohistochemistry and molecular approaches improves highly sensitive detection of BRAF mutations in papillary thyroid cancer

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The optimal method for BRAF mutation detection remains to be determined despite advances in molecular detection techniques. The aim of this study was to compare, against classical Sanger sequencing, the diagnostic performance of two of the most recently developed, highly sensitive methods: BRAF V600E immunohistochemistry (IHC) and peptide nucleic-acid (PNA)-clamp qPCR. BRAF exon 15 mutations were searched in formalin-fixed paraffin-embedded tissues from 86 papillary thyroid carcinoma using the three methods. The limits of detection of Sanger sequencing in borderline or discordant cases were quantified by next generation sequencing. BRAF mutations were found in 74.4 % of cases by PNA, in 71 % of cases by IHC, and in 64 % of cases by Sanger sequencing. Complete concordance for the three methods was observed in 80 % of samples. Better concordance was observed with the combination of two methods, particularly PNA and IHC (59/64) (92 %), while the combination of PNA and Sanger was concordant in 55 cases (86 %). Sensitivity of the three methods was 99 % for PNA, 94.2 % for IHC, and 89.5 % for Sanger. Our data show that IHC could be used as a cost-effective, first-line method for BRAF V600E detection in daily practice, followed by PNA analysis in negative or uninterpretable cases, as the most efficient method. PNA-clamp quantitative PCR is highly sensitive and complementary to IHC as it also recognizes other mutations besides V600E and it is suitable for diagnostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PNA-clamp qPCR:

Nucleic acid clamp quantitative polymerase chain reaction

IHC:

Immunohistochemistry

NGS:

Next generation sequencing

References

  1. D.S. Cooper, G.M. Doherty, B.R. Haugen, B.R. Hauger, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19, 1167–1214 (2009). doi:10.1089/thy.2009.0110

    Article  PubMed  Google Scholar 

  2. E.L. Mazzaferri, What is the optimal initial treatment of low-risk papillary thyroid cancer (and why is it controversial)? Oncology (Williston Park) 23, 579–588 (2009)

    Google Scholar 

  3. Y. Ito, T. Uruno, Y. Takamura, A. Miya, K. Kobayashi, F. Matsuzuka, K. Kuma, A. Miyauchi, Papillary microcarcinomas of the thyroid with preoperatively detectable lymph node metastasis show significantly higher aggressive characteristics on immunohistochemical examination. Oncology 68, 87–96 (2005). doi:10.1159/000085701

    Article  CAS  PubMed  Google Scholar 

  4. P. Malandrino, G. Pellegriti, M. Attard, M.A. Violi, C. Giordano, L. Sciacca, C. Regalbuto, S. Squatrito, R. Vigneri, Papillary thyroid microcarcinomas: a comparative study of the characteristics and risk factors at presentation in two cancer registries. J. Clin. Endocrinol. Metab. 98, 1427–1434 (2013). doi:10.1210/jc.2012-3728

    Article  CAS  PubMed  Google Scholar 

  5. R.P. Tufano, G.V. Teixeira, J. Bishop, K.A. Carson, M. Xing, BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment. Medicine (Baltimore) 91, 274–286 (2012). doi:10.1097/MD.0b013e31826a9c71

    Article  CAS  Google Scholar 

  6. C. Lupi, R. Giannini, C. Ugolini, A. Proietti, P. Berti, M. Minuto, G. Materazzi, R. Elisei, M. Santoro, P. Miccoli, F. Basolo, Extensive clinical experience: Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 92, 4085–4090 (2007). doi:10.1210/jc.2007-1179

    Article  CAS  PubMed  Google Scholar 

  7. M. Russo, P. Malandrino, M.L. Nicolosi, M. Manusia, I. Marturano, M.A. Trovato, G. Pellegriti, F. Frasca, R. Vigneri, The BRAF(V600E) mutation influences the short- and medium-term outcomes of classic papillary thyroid cancer, but is not an independent predictor of unfavorable outcome. Thyroid 24, 1267–1274 (2014). doi:10.1089/thy.2013.0675

    Article  CAS  PubMed  Google Scholar 

  8. N. Kurtulmus, M. Duren, U. Ince, M.C. Yakicier, O. Peker, O. Aydin, E. Altiok, S. Giray, H. Azizlerli, BRAFV600E mutation in Turkish patients with papillary thyroid cancer: strong correlation with indicators of tumor aggressiveness. Endocrine 42, 404–410 (2012). doi:10.1007/s12020-012-9651-x

    Article  CAS  PubMed  Google Scholar 

  9. D. Barbaro, R.M. Incensati, G. Materazzi, G. Boni, M. Grosso, E. Panicucci, P. Lapi, C. Pasquini, P. Miccoli, The BRAF V600E mutation in papillary thyroid cancer with positive or suspected pre-surgical cytological finding is not associated with advanced stages or worse prognosis. Endocrine 45, 462–468 (2014). doi:10.1007/s12020-013-0029-5

    Article  CAS  PubMed  Google Scholar 

  10. G. Gandolfi, V. Sancisi, S. Piana, A. Ciarrocchi, Time to re-consider the meaning of BRAF V600E mutation in papillary thyroid carcinoma. Int. J. Cancer 00, 1–11 (2014). doi:10.1002/ijc.28976

    Google Scholar 

  11. C. Li, K.C. Lee, E.B. Schneider, M.A. Zeiger, BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J. Clin. Endocrinol. Metab. 97, 4559–4570 (2012). doi:10.1210/jc.2012-2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L. Fugazzola, E. Puxeddu, N. Avenia, C. Romei, V. Cirello, A. Cavaliere, P. Faviana, D. Mannavola, S. Moretti, S. Rossi, M. Sculli, V. Bottici, P. Beck-Peccoz, F. Pacini, A. Pinchera, F. Santeusanio, R. Elisei, Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr. Relat. Cancer 13, 455–464 (2006). doi:10.1677/erc.1.01086

    Article  CAS  PubMed  Google Scholar 

  13. S. Lassalle, V. Hofman, M. Ilie, C. Butori, A. Bozec, J. Santini, P. Vielh, P. Hofman, Clinical impact of the detection of BRAF mutations in thyroid pathology: potential usefulness as diagnostic, prognostic and theragnostic applications. Curr. Med. Chem. 17, 1839–1850 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. G. Di Benedetto, Thyroid fine-needle aspiration: the relevance of BRAF mutation testing. Endocrine 47, 1–3 (2014). doi:10.1007/s12020-014-0222-1

    Article  Google Scholar 

  15. J.Y. Lim, S.W. Hong, Y.S. Lee, B.-W. Kim, C.S. Park, H.-S. Chang, J.Y. Cho, Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid 23, 1423–1430 (2013). doi:10.1089/thy.2013.0036

    Article  CAS  PubMed  Google Scholar 

  16. P. Carbonell, M.C. Turpin, D. Torres-Moreno, I. Molina-Martínez, J. García-Solano, M. Perez-Guillermo, P. Conesa-Zamora, Comparison of allelic discrimination by dHPLC, HRM, and TaqMan in the detection of BRAF mutation V600E. J Mol Diagn 13, 467–473 (2011). doi:10.1016/j.jmoldx.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M.A. Ihle, J. Fassunke, K. König, I. Grünewald, M. Schlaak, N. Kreuzberg, L. Tietze, H.-U. Schildhaus, R. Büttner, S. Merkelbach-Bruse, Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p. V600E and non-p.V600E BRAF mutations. BMC Cancer 14, 13 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  18. M. Xing, R.P. Tufano, A.P. Tufaro, S. Basaria, M. Ewertz, E. Rosenbaum, P.J. Byrne, J. Wang, D. Sidransky, P.W. Ladenson, Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 89, 2867–2872 (2004). doi:10.1210/jc.2003-032050

    Article  CAS  PubMed  Google Scholar 

  19. A. Jarry, D. Masson, E. Cassagnau, S. Parois, C. Laboisse, M.G. Denis, Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol. Cell. Probes 18, 349–352 (2004). doi:10.1016/j.mcp.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Y.E. Nikiforov, N.P. Ohori, S.P. Hodak, S.E. Carty, S.O. LeBeau, R.L. Ferris, L. Yip, R.R. Seethala, M.E. Tublin, M.T. Stang, C. Coyne, J.T. Johnson, A.F. Stewart, M.N. Nikiforova, Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J. Clin. Endocrinol. Metab. 96, 3390–3397 (2011). doi:10.1210/jc.2011-1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. He, B. Zhao, X. Zhang, R. Gong, Prognostic value of the BRAF V600E mutation in papillary thyroid carcinoma. Oncol. Lett. 7, 439–443 (2014). doi:10.3892/ol.2013.1713

    PubMed  Google Scholar 

  22. R.K. Thomas, A.C. Baker, R.M. Debiasi, W. Winckler, T. Laframboise, W.M. Lin, M. Wang, W. Feng, T. Zander, L. MacConaill, L.E. Macconnaill, J.C. Lee, R. Nicoletti, C. Hatton, M. Goyette, L. Girard, K. Majmudar, L. Ziaugra, K.-K. Wong, S. Gabriel, R. Beroukhim, M. Peyton, J. Barretina, A. Dutt, C. Emery, H. Greulich, K. Shah, H. Sasaki, A. Gazdar, J. Minna, S.A. Armstrong, I.K. Mellinghoff, F.S. Hodi, G. Dranoff, P.S. Mischel, T.F. Cloughesy, S.F. Nelson, L.M. Liau, K. Mertz, M.A. Rubin, H. Moch, M. Loda, W. Catalona, J. Fletcher, S. Signoretti, F. Kaye, K.C. Anderson, G.D. Demetri, R. Dummer, S. Wagner, M. Herlyn, W.R. Sellers, M. Meyerson, L.A. Garraway, High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 39, 347–351 (2007). doi:10.1038/ng1975

    Article  CAS  PubMed  Google Scholar 

  23. J. Zagzag, A. Pollack, L. Dultz, S. Dhar, J.B. Ogilvie, K.S. Heller, F.-M. Deng, K.N. Patel, Clinical utility of immunohistochemistry for the detection of the BRAF v600e mutation in papillary thyroid carcinoma. Surgery 154, 1199–1204 (2013). doi:10.1016/j.surg.2013.06.020. (discussion 1204–5)

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. Ibrahem, R. Seth, B. O’Sullivan, W. Fadhil, P. Taniere, M. Ilyas, Comparative analysis of pyrosequencing and QMC-PCR in conjunction with high resolution melting for KRAS/BRAF mutation detection. Int. J. Exp. Pathol. 91, 500–505 (2010). doi:10.1111/j.1365-2613.2010.00733.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D.A.M.D.A.M. Heideman, I. Lurkin, M. Doeleman, E.F. Smit, H.M. Verheul, G.A. Meijer, P.J.F. Snijders, E. Thunnissen, E.C. Zwarthoff, KRAS and BRAF mutation analysis in routine molecular diagnostics: comparison of three testing methods on formalin-fixed, paraffin-embedded tumor-derived DNA. J. Mol. Diagn. 14, 247–255 (2012). doi:10.1016/j.jmoldx.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  26. S.T. Lee, S.W. Kim, C.S. Ki, J.H. Jang, J.H. Shin, Y.L. Oh, J.W. Kim, J.H. Chung, Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J. Clin. Endocrinol. Metab. 97, 2299–2306 (2012). doi:10.1210/jc.2011-3135

    Article  CAS  PubMed  Google Scholar 

  27. F. Spagnolo, P. Ghiorzo, P. Queirolo, Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget 5, 10206–10221 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Y.H. Kim, S.E. Choi, S.O. Yoon, S.W. Hong, A testing algorithm for detection of the B-type Raf kinase V600E mutation in papillary thyroid carcinoma. Hum. Pathol. 45, 1483–1488 (2014). doi:10.1016/j.humpath.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  29. D. Jeong, Y. Jeong, J.H. Park, S.W. Han, S.Y.S.J. Kim, Y.J. Kim, S.Y.S.J. Kim, Y. Hwangbo, S. Park, H.D. Cho, M.H. Oh, S.H. Yang, C.J. Kim, BRAF (V600E) mutation analysis in papillary thyroid carcinomas by peptide nucleic acid clamp real-time PCR. Ann. Surg. Oncol. 20, 759–766 (2013). doi:10.1245/s10434-012-2494-0

    Article  PubMed  Google Scholar 

  30. O. Koperek, C. Kornauth, D. Capper, A.S. Berghoff, R. Asari, B. Niederle, A. von Deimling, P. Birner, M. Preusser, Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am. J. Surg. Pathol. 36, 1578 (2012). doi:10.1097/PAS.0b013e3182733d9e

    Article  Google Scholar 

  31. M.V. Pearlstein, D.C. Zedek, D.W. Ollila, A. Treece, M.L. Gulley, P.A. Groben, N.E. Thomas, Validation of the VE1 immunostain for the BRAF V600E mutation in melanoma. J. Cutan. Pathol. 41, 724–732 (2014). doi:10.1111/cup.12364

    Article  PubMed  PubMed Central  Google Scholar 

  32. F.A. Sinicrope, T.C. Smyrk, D. Tougeron, S.N. Thibodeau, S. Singh, A. Muranyi, K. Shanmugam, T.M. Grogan, S.R. Alberts, Q. Shi, Mutation-specific antibody detects mutant BRAFV600E protein expression in human colon carcinomas. Cancer 27, 2765–2770 (2013). doi:10.1002/cncr.28133

    Article  Google Scholar 

  33. M.I. Ilie, S. Lassalle, E. Long-Mira, C. Bonnetaud, O. Bordone, V. Lespinet, A. Lamy, J.-C. Sabourin, J. Haudebourg, C. Butori, N. Guevara, I. Peyrottes, J.-L. Sadoul, A. Bozec, J. Santini, D. Capper, A. von Deimling, J.-F. Emile, V. Hofman, P. Hofman, Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid 24, 858–866 (2014). doi:10.1089/thy.2013.0302

    Article  CAS  PubMed  Google Scholar 

  34. M. Bullock, C. O’Neill, A. Chou, A. Clarkson, T. Dodds, C. Toon, M. Sywak, S.B. Sidhu, L.W. Delbridge, B.G. Robinson, D.L. Learoyd, D. Capper, A. Von Deimling, R.J. Clifton-Bligh, A.J. Gill, Utilization of a MAB for BRAFV600E detection in papillary thyroid carcinoma. Endocr. Relat. Cancer 19, 779–784 (2012). doi:10.1530/ERC-12-0239

    Article  CAS  PubMed  Google Scholar 

  35. E.D. Rossi, M. Martini, S. Capodimonti, T. Cenci, P. Straccia, B. Angrisani, C. Ricci, P. Lanza, C.P. Lombardi, A. Pontecorvi, L.M. Larocca, G. Fadda, Analysis of immunocytochemical and molecular BRAF expression in thyroid carcinomas: a cytohistologic institutional experience. Cancer Cytopathol. 122, 527–535 (2014). doi:10.1002/cncy.21416

    Article  CAS  PubMed  Google Scholar 

  36. S.-R. Lee, H. Yim, J.H. Han, K.B. Lee, J. Lee, E.Y. Soh, D.J. Kim, Y.-S. Chung, S.-Y. Jeong, S.S. Sheen, S.H. Park, J.-H. Kim, VE1 antibody is not highly specific for the BRAF V600E mutation in thyroid cytology categories with the exception of malignant cases. Am. J. Clin. Pathol. 143, 437–444 (2015). doi:10.1309/AJCPOBI5CUZIBMO1

    Article  CAS  PubMed  Google Scholar 

  37. P. Ghiorzo, S. Gargiulo, L. Pastorino, S. Nasti, R. Cusano, W. Bruno, S. Gliori, M.R. Sertoli, A. Burroni, V. Savarino, F. Gensini, R. Sestini, P. Queirolo, A.M. Goldstein, G.B. Scarrà, Impact of E27X, a novel CDKN2A germ line mutation, on p16 and p14ARF expression in Italian melanoma families displaying pancreatic cancer and neuroblastoma. Hum. Mol. Genet. 15, 2682–2689 (2006). doi:10.1093/hmg/ddl199

    Article  CAS  PubMed  Google Scholar 

  38. P. Origone, S. Gargiulo, L. Mastracci, A. Ballestrero, L. Battistuzzi, C. Casella, D. Comandini, R. Cusano, A.P. Dei Tos, R. Fiocca, A. Garuti, P. Ghiorzo, C. Martinuzzi, L. Toffolatti, G. Bianchi Scarrà, Molecular characterization of an Italian series of sporadic GISTs. Gastric Cancer 16, 596–601 (2013). doi:10.1007/s10120-012-0213-y

    Article  CAS  PubMed  Google Scholar 

  39. F. Grillo, S. Pigozzi, P. Ceriolo, P. Calamaro, R. Fiocca, L. Mastracci, Factors affecting immunoreactivity in long-term storage of formalin-fixed paraffin-embedded tissue sections. Histochem. Cell Biol. (2015). doi:10.1007/s00418-015-1316-4

    PubMed  Google Scholar 

  40. J. Collins, E.D. Rossi, A. Chandra, S.Z. Ali, Terminology and nomenclature schemes for reporting thyroid cytopathology: an overview. Semin. Diagn. Pathol. (2014). doi:10.1053/j.semdp.2014.12.007

    PubMed  Google Scholar 

  41. J.Y. Seo, E.K. Kim, J.Y. Kwak, Additional BRAF mutation analysis may have additional diagnostic value in thyroid nodules with ‘suspicious for malignant’ cytology alone even when the nodules do not show suspicious US features. Endocrine 1–7, 283–289 (2014). doi:10.1007/s12020-013-0150-5

    Article  Google Scholar 

  42. D.W. Ball, Selectively targeting mutant BRAF in thyroid cancer. J. Clin. Endocrinol. Metab. 95, 60–61 (2010). doi:10.1210/jc.2009-2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Gandolfi, V. Sancisi, F. Torricelli, M. Ragazzi, A. Frasoldati, S. Piana, A. Ciarrocchi, Allele percentage of the BRAF V600E mutation in papillary thyroid carcinomas and corresponding lymph node metastases: no evidence for a role in tumor progression. J. Clin. Endocrinol. Metab. 98, 934–942 (2013). doi:10.1210/jc.2012-3930

    Article  Google Scholar 

  44. C. Gouveia, N.T. Can, A. Bostrom, J.P. Grenert, A. van Zante, L.A. Orloff, Lack of association of BRAF mutation with negative prognostic indicators in papillary thyroid carcinoma: the University of California, San Francisco, experience. JAMA Otolaryngol Head Neck Surg 139, 1164–1170 (2013). doi:10.1001/jamaoto.2013.4501

    Article  PubMed  Google Scholar 

  45. V. Sancisi, D. Nicoli, M. Ragazzi, S. Piana, A. Ciarrocchi, BRAFV600E mutation does not mean distant metastasis in thyroid papillary carcinomas. J. Clin. Endocrinol. Metab. 97, 1745–1749 (2012). doi:10.1210/jc.2012-1526

    Article  Google Scholar 

  46. E. Puxeddu, S. Filetti, BRAF mutation assessment in papillary thyroid cancer: are we ready to use it in clinical practice? Endocrine 45, 341–343 (2014). doi:10.1007/s12020-013-0139-0

    Article  CAS  PubMed  Google Scholar 

  47. D. De Biase, V. Cesari, M. Visani, G.P. Casadei, N. Cremonini, G. Gandolfi, V. Sancisi, M. Ragazzi, A. Pession, A. Ciarrocchi, G. Tallini, High-sensitivity BRAF mutation analysis: bRAF V600E is acquired early during tumor development but is heterogeneously distributed in a subset of papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 99, 1530–1538 (2014). doi:10.1210/jc.2013-4389

    Article  Google Scholar 

  48. A. Guerra, M.R. Sapio, V. Marotta, E. Campanile, S. Rossi, I. Forno, L. Fugazzola, A. Budillon, T. Moccia, G. Fenzi, M. Vitale, The primary occurrence of BRAFV600E is a rare clonal event in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 97, 517–524 (2012). doi:10.1210/jc.2011-0618

    Article  CAS  PubMed  Google Scholar 

  49. A.K. Zimmermann, U. Camenisch, M.P. Rechsteiner, B. Bode-Lesniewska, M. Rössle, Value of immunohistochemistry in the detection of BRAFV600E mutations in fine-needle aspiration biopsies of papillary thyroid carcinoma. Cancer Cytopathol. 122, 48–58 (2014). doi:10.1002/cncy.21352

    Article  CAS  PubMed  Google Scholar 

  50. D. Capper, M. Preusser, A. Habel, F. Sahm, U. Ackermann, G. Schindler, S. Pusch, G. Mechtersheimer, H. Zentgraf, A. von Deimling, Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 122, 11–19 (2011). doi:10.1007/s00401-011-0841-z

    Article  CAS  PubMed  Google Scholar 

  51. Y.-W. Lee, Peptide nucleic acid clamp polymerase chain reaction reveals a deletion mutation of the BRAF gene in papillary thyroid carcinoma: a case report. Exp Ther Med 6, 1550–1552 (2013). doi:10.3892/etm.2013.1332

    PubMed  PubMed Central  Google Scholar 

  52. S.-H. Kang, J.Y. Pyo, S.-W. Yang, S.W. Hong, Detection of BRAF V600E mutation with thyroid tissue using pyrosequencing: comparison with PNA-clamping and real-time PCR. Am. J. Clin. Pathol. 139, 759–764 (2013). doi:10.1309/AJCPN3ULH6YWBHPH

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ghiorzo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Grants

AIRC 15460/2014 and PRA D32I1400036005-2014 to PG.

Additional information

Paola Ghiorzo, Federica Grillo, and Luca Mastracci have shared senior contribution and are listed in alphabetical order.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinuzzi, C., Pastorino, L., Andreotti, V. et al. A combination of immunohistochemistry and molecular approaches improves highly sensitive detection of BRAF mutations in papillary thyroid cancer. Endocrine 53, 672–680 (2016). https://doi.org/10.1007/s12020-015-0720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0720-9

Keywords

Navigation