Skip to main content

Advertisement

Log in

Effect of early life stress on pancreatic isolated islets’ insulin secretion in young adult male rats subjected to chronic stress

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Early stressful experiences may predispose organisms to certain disorders, including those of metabolic defects. This study aimed to explore the effects of early life stress on pancreatic insulin secretion and glucose transporter 2 (GLUT2) protein levels in stressed young adult male rats. Foot shock stress was induced in early life (at 2 weeks of age) and/or in young adulthood (at 8–10 weeks of age) for five consecutive days. Blood samples were taken before and after stress exposure in young adult rats. At the end of the experiment, glucose tolerance, isolated islets’ insulin secretion, and pancreatic amounts of GLUT2 protein were measured. Our results show that early life stress has no effect on basal plasma corticosterone levels and adrenal weight, either alone or combined with young adulthood stress, but that early life + young adulthood stress could prevent weight gain, and cause an increase in basal plasma glucose and insulin. The homeostasis model assessment of insulin resistance index did not increase, when the rats were subjected to early life stress alone, but increased when combined with young adulthood stress. Moreover, glucose tolerance was impaired by the combination of early life + young adult stress. There was a decrease in islet’s insulin secretion in rats subjected to early life stress in response to 5.6 mM glucose concentration, but an increase with a concentration of 16.7 mM glucose. However, in rats subjected to early life + young adulthood stress, islet’s insulin secretion increased in response to both the levels of glucose concentrations. GLUT2 protein levels decreased in response to early life stress and early life + young adulthood stress, but there was a greater decrease in the early life stress group. In conclusion, perhaps early life stress sensitizes the body to stressors later in life, making it more susceptible to metabolic syndrome only when the two are in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Zeugmann, A. Quante, L. Popova-Zeugmann, W. Kössler, I. Heuser, I. Anghelescu, Pathways linking early life stress, metabolic syndrome, and the inflammatory marker fibrinogen in depressed inpatients. Psychiatr. Danub. 24, 57–65 (2012)

    PubMed  Google Scholar 

  2. M. Trombini, H. Hulshof, G. Graiani, L. Carnevali, P. Meerlo, F. Quaini et al., Early maternal separation has mild effects on cardiac autonomic balance and heart structure in adult male rats. Stress 15, 457–470 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. L. Marais, S.J. Van Rensburg, J.M. Van Zyl, D.J. Stein, W.M. Daniels, Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci. Res. 61, 106–112 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Chida, N. Sudo, J. Sonoda, T. Hiramoto, C. Kubo, Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus–pituitary–adrenal axis. Am. J. Respir. Crit. Care Med. 175, 316–322 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. P.D. Gluckman, M.A. Hanson, C. Cooper, K.L. Thornburg, Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. A.H. Veenema, S.O. Reber, S. Selch, F. Obermeier, I.D. Neumann, Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice. Endocrinology 149, 2727–2736 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. D.R.C. Fóscolo, R.B. Fóscolo, U. Marubayashi, A.M. Reis, C.C. Coimbra, Neonatal maternal separation affects endocrine and metabolic stress responses to ether exposure but not to restraint exposure in adult rats. Metab. Brain Dis. 23, 375–385 (2008)

    Article  PubMed  Google Scholar 

  8. R.J. McPherson, M. Mascher-Denen, S.E. Juul, Postnatal stress produces hyperglycemia in adult rats exposed to hypoxia-ischemia. Pediatr. Res. 66, 278–282 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. M. Nováková, V. Bruderová, Z. Sulova, J. Kopacek, L. Lacinova, R. Kvetnansky et al., Modulation of expression of the sigma receptors in the heart of rat and mouse in normal and pathological conditions. Gen. Physiol. Biophys. 26, 110–117 (2007)

    PubMed  Google Scholar 

  10. D. Kaufman, M.A. Banerji, I. Shorman, E.L. Smith, J.D. Coplan, L.A. Rosenblum et al., Early-life stress and the development of obesity and insulin resistance in juvenile bonnet macaques. Diabetes 56, 1382–1386 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. J.W. Rich-Edwards, D. Spiegelman, E.N. Lividoti Hibert, H.-J. Jun, T.J. Todd, I. Kawachi et al., Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am. J. Prev. Med. 39, 529–536 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  12. C. Heim, D.J. Newport, S. Heit, Y.P. Graham, M. Wilcox, R. Bonsall et al., Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284, 592–597 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. C. Lee, V. Tsenkova, D. Carr, Childhood trauma and metabolic syndrome in men and women. Soc. Sci. Med. 105, 122–130 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  14. H. Zardooz, S. Zahedi Asl, M.G. Naseri, Effect of chronic psychological stress on insulin release from rat isolated pancreatic islets. Life Sci. 79, 57–62 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. H. Zardooz, S. Zahediasl, F. Rostamkhani, B. Farrokhi, S. Nasiraei, B. Kazeminezhad et al., Effects of acute and chronic psychological stress on isolated islets’ insulin release. EXCLI J. 11, 163–175 (2012)

    Google Scholar 

  16. E. Farias-Silva, M.M. Sampaio-Barros, M.E. Amaral, E.M. Carneiro, A.C. Boschero, D.M. Grassi-Kassisse et al., Subsensitivity to insulin in adipocytes from rats submitted to foot-shock stress. Can. J. Physiol. Pharmacol. 80, 783–789 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. A. Rafacho, L. Marroquí, S.R. Taboga, J.L. Abrantes, L.R. Silveira, A.C. Boschero et al., Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology 151, 85–95 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. J.L. Beaudry, M.C. Riddell, Effects of glucocorticoids and exercise on pancreatic β-cell function and diabetes development. Diabetes. Metab. Res. Rev. 28, 560–573 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. M. Matsumoto, K. Higuchi, H. Togashi, H. Koseki, T. Yamaguchi, M. Kanno et al., Early postnatal stress alters the 5-HTergic modulation to emotional stress at postadolescent periods of rats. Hippocampus 15, 77 (2005)

    Article  Google Scholar 

  20. F. Rostamkhani, H. Zardooz, S. Zahediasl, B. Farrokhi, Comparison of the effects of acute and chronic psychological stress on metabolic features in rats. J. Zhejiang Univ. Sci. B. 13, 904–912 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. M. Andersen, M. Bignotto, R. Machado, S. Tufik, Different stress modalities result in distinct steroid hormone responses by male rats. Braz. J. Med. Biol. Res. 37, 791–797 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. M. Fluttert, S. Dalm, M.S. Oitzl, A refined method for sequential blood sampling by tail incision in rats. Lab. Anim. 34, 372–378 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. S.M. Chalkley, M. Hettiarachchi, D.J. Chisholm, E.W. Kraegen, Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats. Am. J. Physiol. Endocrinol. Metab. 282, E1231–E1238 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. W. Oosterlinck, A. Vanderper, W. Flameng, P. Herijgers, Glucose tolerance and left ventricular pressure-volume relationships in frequently used mouse strains. J. Biomed. Biotechnol. (2011). doi:10.1155/2011/281312

  25. X. Li, Yuan L, Wang Y, Lu C, Li X, Angiotensin-converting enzyme 2 deficiency aggravates glucose intolerance via impairment of islet microvascular density in mice with high-fat diet. J. Diabetes Res. (2013). doi:10.1155/2013/405284

  26. A. Hoeflich, M.M. Weber, T. Fisch, S. Nedbal, C. Fottner, M.W. Elmlinger et al., Insulin-like growth factor binding protein 2 (IGFBP-2) separates hypertrophic and hyperplastic effects of growth hormone (GH)/IGF-I excess on adrenocortical cells in vivo. FASEB J. 16, 1721–1731 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. P.E. Lacy, M. Kostianovsky, Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967)

    Article  CAS  PubMed  Google Scholar 

  28. C.S. Velez-Granell, A.E. Arias, J.A. Torres-Ruiz, M. Bendayan, Molecular chaperones in pancreatic tissue: the presence of cpn10, cpn60 and hsp70 in distinct compartments along the secretory pathway of the acinar cells. J. Cell Sci. 107, 539–549 (1994)

    CAS  PubMed  Google Scholar 

  29. N.J. Kruger, in The Bradford method for protein quantitation, ed. by J.M. Walker. Basic protein and peptide protocols (Humana Press, Totowa, 1994), pp. 9–15

  30. M. Meaney, D. Aitken, S. Sharma, V. Viau, A. Sarrieau, Postnatal handling increases hippocampal type II glucocorticoid receptors and enhances adrenocortical negative-feedback efficacy in the rat. Neuroendocrinology 51, 597–604 (1989)

    Article  Google Scholar 

  31. P.M. Plotsky, M.J. Meaney, Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol. Brain Res. 18, 195–200 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. N. Uschold-Schmidt, K.D. Nyuyki, A.M. Füchsl, I.D. Neumann, S.O. Reber, Chronic psychosocial stress results in sensitization of the HPA axis to acute heterotypic stressors despite a reduction of adrenal in vitro ACTH responsiveness. Psychoneuroendocrinology 37, 1676–1687 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. E.L. Rich, L.M. Romero, Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1628–R1636 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. C.R. Teague, F.S. Dhabhar, R.H. Barton, B. Beckwith-Hall, J. Powell, M. Cobain et al., Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague–Dawley rats. J. Proteome Res. 6, 2080–2093 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. P. Pervanidou, G.P. Chrousos, Metabolic consequences of stress during childhood and adolescence. Metabolism 61, 611–619 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. M. Vallée, W. Mayo, F. Dellu, M. Le Moal, H. Simon, S. Maccari, Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626–2636 (1997)

    PubMed  Google Scholar 

  37. A.S. Loria, D.M. Pollock, J.S. Pollock, Early life stress sensitizes rats to angiotensin II–induced hypertension and vascular inflammation in adult life. Hypertension 55, 494–499 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. D.A. Sandoval, S.N. Davis, Leptin: metabolic control and regulation. J. Diabet. Complicat. 17, 108–113 (2003)

    Article  Google Scholar 

  39. H. Zardooz, S. Zahedi Asl, M. Gharib Naseri, M. Hedayai, Effect of chronic restraint stress on carbohydrate metabolism in rat. Physiol. Behav. 89, 373–378 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. R. Eguchi, F.R. Scarmagnani, C.A. Cunha, G.I. Souza, L.P. Pisani, E.B. Ribeiro et al., Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats. Lipids Health Dis. 10, 71 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. M. Ochi, K. Tominaga, F. Tanaka, T. Tanigawa, M. Shiba, T. Watanabe et al., Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats. Life Sci. 82, 862–868 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. G. Wilcox, Insulin and insulin resistance. Clin. Biochem. Rev. 26, 19 (2005)

    PubMed Central  PubMed  Google Scholar 

  43. G. Widdup, J.M. Bryson, D. Pawlak, J.L. Phuyal, G.S. Denyer, I.D. Caterson, In vivo and in vitro suppression by leptin of glucose-stimulated insulin hypersecretion in high glucose-fed rats. Eur. J. Endocrinol. 143, 431–437 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Y. Wang, M. Nishi, A. Doi, T. Shono, Y. Furukawa, T. Shimada et al., Ghrelin inhibits insulin secretion through the AMPK–UCP2 pathway in β cells. FEBS Lett. 584, 1503–1508 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. S. Jacqueminet, I. Briaud, C. Rouault, G. Reach, V. Poitout, Inhibition of insulin gene expression by long-term exposure of pancreatic β cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism 49, 532–536 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. J-h. Fu, S-r. Xie, S-j. Kong, Y. Wang, W. Wei, Y. Shan et al., The combination of a high-fat diet and chronic stress aggravates insulin resistance in Wistar male rats. Exp. Clin. Endocrinol. Diabetes 117, 354–360 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. M.-T. Guillam, E. Hümmler, E. Schaerer, J.-Y. Wu, M.J. Birnbaum, F. Beermann et al., Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat. Genet. 17, 327–330 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. A. Valera, G. Solanes, J. Fernández-Alvarez, A. Pujol, J. Ferrer, G. Asins et al., Expression of GLUT-2 antisense RNA in beta cells of transgenic mice leads to diabetes. J. Biol. Chem. 269, 28543–28546 (1994)

    CAS  PubMed  Google Scholar 

  49. S.D. Hughes, C. Quaade, J.H. Johnson, S. Ferber, C. Newgard, Transfection of AtT-20ins cells with GLUT-2 but not GLUT-1 confers glucose-stimulated insulin secretion. Relationship to glucose metabolism. J. Biol. Chem. 268, 15205–15212 (1993)

    CAS  PubMed  Google Scholar 

  50. M. Tal, B.B. Kahn, H.F. Lodish, Expression of the low Km GLUT-1 glucose transporter is turned on in perivenous hepatocytes of insulin-deficient diabetic rats. Endocrinology 129, 1933–1941 (1991)

    Article  CAS  PubMed  Google Scholar 

  51. M. Tal, Y.-J. Wu, M. Leiser, M. Surana, H. Lodish, N. Fleischer et al., [Val12] HRAS downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis. Proc. Natl. Acad. Sci. 89, 5744–5748 (1992)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. A. De Vos, H. Heimberg, E. Quartier, P. Huypens, L. Bouwens, D. Pipeleers et al., Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J. Clin. Investig. 96, 2489 (1995)

    Article  PubMed Central  PubMed  Google Scholar 

  53. M.S. Patel, M. Srinivasan, Metabolic programming: causes and consequences. J. Biol. Chem. 277, 1629–1632 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. A. Dhar, I. Dhar, B. Jiang, K.M. Desai, L. Wu, Chronic methylglyoxal infusion by minipump causes pancreatic β-cell dysfunction and induces type 2 diabetes in Sprague-Dawley rats. Diabetes 60, 899–908 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. J.R. Porter, T.G. Barrett, Monogenic syndromes of abnormal glucose homeostasis: clinical review and relevance to the understanding of the pathology of insulin resistance and β cell failure. J. Med. Genet. 42, 893–902 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. M.D. Meglasson, F.M. Matschinsky, Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab. Rev. 2, 163–214 (1986)

    Article  CAS  PubMed  Google Scholar 

  57. K. Yasuda, Y. Yamada, N. Inagaki, H. Yano, Y. Okamoto, K. Tsuji et al., Expression of GLUT1 and GLUT2 glucose transporter isoforms in rat islets of Langerhans and their regulation by glucose. Diabetes 41, 76–81 (1992)

    Article  CAS  PubMed  Google Scholar 

  58. G.C. Weir, S. Bonner-Weir, J.L. Leahy, Islet mass and function in diabetes and transplantation. Diabetes 39, 401–405 (1990)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from Research Deputy of Faculty of Medicine, Shahid Beheshti University of Medical Sciences.

Ethical standards

All procedures were approved by the Animal Care and Use Committee of the Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homeira Zardooz.

Additional information

This paper is part of a PhD thesis by Forouzan Sadeghimahalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghimahalli, F., Karbaschi, R., Zardooz, H. et al. Effect of early life stress on pancreatic isolated islets’ insulin secretion in young adult male rats subjected to chronic stress. Endocrine 48, 493–503 (2015). https://doi.org/10.1007/s12020-014-0337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0337-4

Keywords

Navigation