Skip to main content

Advertisement

Log in

Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague–Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

IR:

Insulin resistance

CS:

Chronic stress

HFD:

High-fat diet

HPA:

Hypothalamic–pituitary–adrenal

FAs:

Fatty acids

TGs:

Triglycerides

VLDL:

Very low-density lipoprotein

FFAs:

Free fatty acids

CH:

Cholesterol

DNL:

De novo lipogenesis

HI:

Hepatic index

VOI:

Visceral obesity index

TC:

Total cholesterol

ALT:

Alanine aminotransferase

AST:

Alanine aminotransferase

FFA:

Free fatty acids

MDA:

Melondialdehyde

SOD:

Superoxide dismutase

HDL:

High density lipoprotein

LDL:

Low-density lipoprotein

TNF-α:

Tumor necrosis factor-α

HOMA-IR:

Homeostasis Model of Assessment–Insulin Resistance

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription-PCR

FATP5:

Fatty acid transport protein 5

HMGCR:

β-hydroxy-β-methylglutaryl-coa reductase

ACCase:

Acetyl-CoA carboxylase

GPAT:

Glycerin-3-phosphate acyltransferase

ACOX-1:

Acyl-CoA oxidase-1

CPT-1:

Carnitine palmitoyltransferases-1

ApoB100:

Apolipoprotein B 100

ACAT2:

Acyl coenzyme A-cholesterol acyltransferase-2

MTTP:

Microsomal triglyceride transfer protein

HE:

Hematoxylin-eosin

SD:

Standard deviation

ANOVA:

Analysis of variance

References

  1. J.A. Marrero, R.J. Fontana, G.L. Su et al., NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 36(6), 1349–1354 (2002)

    Article  PubMed  Google Scholar 

  2. G. Marchesini, M. Brizi, A.M. Morselli-Labate et al., Association of nonalcoholic fatty liver disease with insulin resistance. Am. J. Med. 107, 450–455 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. M.M. Yeh, E.M. Brunt, Pathology of nonalcoholic fatty liver disease. Am. J. Clin. Pathol. 128, 837–847 (2007)

    Article  PubMed  Google Scholar 

  4. B. Czech, K. Weigand, I. Neumann et al., Combination of psychosocial stress and a NASH-inducing diet in mice. Z. Gastroenterol. (2013). doi:10.1055/s-0032-1331912

    Google Scholar 

  5. B.M. Tannenbaum, D.N. Brindley, G.S. Tannenbaum et al., High-fat feeding alters both basal and stress-induced hypothalamic– pituitary–adrenal activity in the rat. Am. J. Physiol. 273(6 Pt 1), E1168–E1177 (1997)

    CAS  PubMed  Google Scholar 

  6. J.H. Fu, S.R. Xie, S.J. Kong et al., The combination of a high-fat diet and chronic stress aggravates insulin resistance in Wistar male rats. Exp. Clin. Endocrinol. Diabetes 117(7), 354–360 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. G. Musso, R. Gambino, M. Cassader, Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res. 48(1), 1–26 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. P. Nguyen, V. Leray, M. Diez et al., Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 92(3), 272–283 (2008)

    Article  CAS  Google Scholar 

  9. D.P. Macfarlane, S. Forbes, B.R. Walker, Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J. Endocrinol. 197, 189–204 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. J.H. Fu, H.S. Sun, Y. Wang et al., The effects of a fat- and sugar-enriched diet and chronic stress on nonalcoholic fatty liver disease in male Wistar rats. Dig. Dis. Sci. 55(8), 2227–2236 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. S. Gao, X. Han, J. Fu et al., Influence of chronic stress on the compositions of hepatic cholesterol and triglyceride in male Wistar rats fed a high fat diet. Hepatol. Res. 42(7), 686–695 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. S.M. Haffner, E. Kennedy, C. Gonzalez et al., A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care 19, 1138–1141 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. D.E. Kleiner, E.M. Brunt, M. Van Natta et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6), 1313–1321 (2005)

    Article  PubMed  Google Scholar 

  14. R.S. Kukreja, B.N. Datta, R.N. Chakravarti, Catecholamine-induced aggravation of aortic and coronary atherosclerosis in monkeys. Atherosclerosis 40, 291–298 (1981)

    Article  CAS  PubMed  Google Scholar 

  15. E. Kitrakia, G. Soulisa, K. Gerozissisb, Impaired neuroendocrine response to stress following a short-term fat-enriched diet. Neuroendocrinology 79, 338–345 (2004)

    Article  Google Scholar 

  16. A. Legendre, B.S. Ruth, Exaggerated response to mild stress in rats fed high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, 1288–1294 (2006)

    Article  Google Scholar 

  17. R. Collu, Y. Taché, J.R. Ducharme, Hormonal modifications induced by chronic stress in rats. J. Steroid. Biochem. 11(1C), 989–1000 (1979)

    Article  CAS  PubMed  Google Scholar 

  18. L.A. Adams, A. Feldstein, K.D. Lindor et al., Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology 39, 909–914 (2004)

    Article  PubMed  Google Scholar 

  19. D.K. Bloomfield, Dynamics of cholesterol metabolism. I. Factors regulating total sterol biosynthesis and accumulation in the rat. Proc. Natl. Acad. Sci. USA 50, 117–124 (1963)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. F. Foufelle, P. Ferré, New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem. J. 366(Pt 2), 377–391 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. H.S. Sul, D. Wang, Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18, 331–351 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. L.S. Sidossis, B. Mittendorfer, E. Walser et al., Hyperglycemia-induced inhibition of splanchnic fatty acid oxidation increases hepatic triacylglycerol secretion. Am. J. Physiol. 275(5 Pt 1), E798–E805 (1998)

    CAS  PubMed  Google Scholar 

  23. B. Hubbard, H. Doege, S. Punreddy et al., Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology 130(4), 1259–1269 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. M. Schreurs, F. Kuipers, F.R. van der Leij, Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obes. Rev. 11(5), 380–388 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. L. Yang, Y. Zhang, S. Wang et al., Decreased liver peroxisomal β-oxidation accompanied by changes in brain fatty acid composition in aged rats. Neurol Sci. 35(2), 289–293 (2014)

    Article  PubMed  Google Scholar 

  26. M. Zhou, E.A. Fisher, H.N. Ginsberg, Regulated co-translational ubiquitination of apoliprotein B100. A new paradigm for proteasomal degradation of a secretory protein. J. Biol. Chem. 273, 24649–24653 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. R.A. Davis, Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim. Biophys. Acta 1440(1), 1–31 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. E.A. Fisher, The degradation of apolipoprotein B100: Multiple opportunities to regulate VLDL triglyceride production by different proteolytic pathways. Biochim. Biophys. Acta 1821(5), 778–781 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. C.C. Chang, N. Sakashita, K. Ornvold et al., Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J. Biol. Chem. 275(36), 28083–28092 (2000)

    CAS  PubMed  Google Scholar 

  30. C. Leon, J.S. Hill, K.M. Wasan, Potential role of acyl-coenzyme A: cholesterol transferase (ACAT) Inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm. Res. 22(10), 1578–1588 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. L.J. Wilcox, N.M. Borradaile, L.E. de Dreu et al., Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTTP. J. Lipid Res. 42(5), 725–734 (2001)

    CAS  PubMed  Google Scholar 

  32. E.A. Fisher, M. Pan, X. Chen et al., The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. J. Biol. Chem. 276, 27855–27863 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. B. Fromenty, Fat accretion in a subpopulation of hepatocytes as a strategy to protect the whole liver against oxidative stress and lipotoxicity. Clin. Res. Hepatol. Gastroenterol. 37(6), 553–555 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. C.N. Wang, R.S. McLeod, Z. Yao et al., Effects of dexamethasone on the synthesis, degradation, and secretion of apolipoprotein B in cultured rat hepatocytes. Arterioscler. Thromb. Vasc. Biol. 15(9), 1481–1491 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. M. Devaki, R. Nirupama, H.N. Yajurvedi, Chronic stress-induced oxidative damage and hyperlipidemia are accompanied by atherosclerotic development in rats. Stress 16(2), 233–243 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Wenxia Bai, an associate researcher (Jiangsu center for safety evaluation of drugs, China) for her contribution in histopathological examination, and professor Rong Hu for her contribution in manuscript revision.

Conflict of interest

None of the authors had a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Lin, M., Wang, X. et al. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat. Endocrine 48, 483–492 (2015). https://doi.org/10.1007/s12020-014-0307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0307-x

Keywords

Navigation