Skip to main content

Advertisement

Log in

Muscle–bone and fat–bone interactions in regulating bone mass: do PTH and PTHrP play any role?

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Metabolic bone disease occurs when there is a net loss in bone density. Osteoporosis, the most common metabolic bone disease, is a devastating problem and an increasingly major public health issue. A substantial body of evidence in the elderly population indicates that a relationship exists between the components of body weight and various measures of bone/mass, density, and function. Both muscle and fat contribute to the body’s total weight and the intimate associations of muscle, fat, and bone are known. But the close functional interactions between muscle and bone or fat and bone are largely unidentified and have drawn much attention in recent years. Each of these tissues not only responds to afferent signals from traditional hormone systems and the central nervous systems but also secretes factors with important endocrine functions. Studies suggest that during growth, development, and aging, the relationship of muscle and fat with the skeleton possibly governs bone homeostasis and turnover. A better understanding of the endocrine function and the cellular and molecular mechanisms and pathways linking muscle or adipose tissues with bone anabolism and catabolism is a new avenue for novel pathways for anabolic drug discovery. These in turn will likely lead to more rational therapy toward increasingly prevalent disorders like osteoporosis. In this review, some of the recent works on the interaction of bone with muscle and fat are highlighted, and in so doing the role of parathyroid hormone (PTH), and PTH-related peptide (PTHrP) is surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. X. Feng, J.M. McDonald, Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121–145 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  2. L.G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005)

    PubMed  CAS  PubMed Central  Google Scholar 

  3. S. Khosla, B.L. Riggs, Pathophysiology of age-related bone loss and osteoporosis. Endocrinol. Metab. Clin. North Am. 34, 1015–1030 (2005)

    PubMed  CAS  Google Scholar 

  4. U.S.D.o.H.a.H. Services, National healthcare disparities report, Agency for healthcare research and quality, in: www.ahrq.gov/qual/qrdr11.htm, pp. 98–102 (2011). Accessed 28 Apr 2014

  5. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41, 58–69 (2012)

    PubMed  CAS  Google Scholar 

  6. C.J. Rosen, J.P. Bilezikian, Clinical review 123: anabolic therapy for osteoporosis. J. Clin. Endocrinol. Metab. 86, 957–964 (2001)

    PubMed  CAS  Google Scholar 

  7. E.M. Greenfield, Anabolic effects of intermittent PTH on osteoblasts. Curr. Mol. Pharmacol. 5, 127–134 (2012)

    PubMed  CAS  Google Scholar 

  8. N.S. Datta, Osteoporotic fracture and parathyroid hormone. World J. Orthop. 2, 67–74 (2011)

    PubMed  PubMed Central  Google Scholar 

  9. P.D. Miller, J.P. Bilezikian, M. Diaz-Curiel, P. Chen, F. Marin, J.H. Krege, M. Wong, R. Marcus, Occurrence of hypercalciuria in patients with osteoporosis treated with teriparatide. J. Clin. Endocrinol. Metab. 92, 3535–3541 (2007)

    PubMed  CAS  Google Scholar 

  10. K.A. Cappuzzo, J.C. Delafuente, Teriparatide for severe osteoporosis. Ann. Pharmacother. 38, 294–302 (2004)

    PubMed  CAS  Google Scholar 

  11. A. Sikon, P. Batur, Profile of teriparatide in the management of postmenopausal osteoporosis. Int. J. Womens Health 2, 37–44 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  12. L. Pietrogrande, Update on the efficacy, safety, and adherence to treatment of full length parathyroid hormone, PTH (1-84), in the treatment of postmenopausal osteoporosis. Int. J. Womens Health 1, 193–203 (2010)

    PubMed  PubMed Central  Google Scholar 

  13. M.P. Herrmann-Erlee, J.N. Heersche, J.W. Hekkelman, P.J. Gaillard, G.W. Tregear, J.A. Parsons, J.T. Potts Jr, Effects of bone in vitro of bovine parathyroid hormone and synthetic fragments representing residues 1–34, 2–34 and 3–34. Endocr. Res. Commun. 3, 21–35 (1976)

    PubMed  CAS  Google Scholar 

  14. T.F. DeBartolo, L.E. Pegg, C. Shasserre, T.J. Hahn, Comparison of parathyroid hormone and calcium ionophore A23187 effects on bone resorption and nucleic acid synthesis in cultured fetal rat bone. Calcif. Tissue Int. 34, 495–500 (1982)

    PubMed  CAS  Google Scholar 

  15. B.R. MacDonald, J.A. Gallagher, R.G. Russell, Parathyroid hormone stimulates the proliferation of cells derived from human bone. Endocrinology 118, 2445–2449 (1986)

    PubMed  CAS  Google Scholar 

  16. E. Canalis, M. Centrella, W. Burch, T.L. McCarthy, Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J. Clin. Invest. 83, 60–65 (1989)

    PubMed  CAS  PubMed Central  Google Scholar 

  17. S. Nishida, A. Yamaguchi, T. Tanizawa, N. Endo, T. Mashiba, Y. Uchiyama, T. Suda, S. Yoshiki, H.E. Takahashi, Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 15, 717–723 (1994)

    PubMed  CAS  Google Scholar 

  18. N.C. Partridge, X. Li, L. Qin, Understanding parathyroid hormone action. Ann. NY Acad. Sci. 1068, 187–193 (2006)

    PubMed  CAS  Google Scholar 

  19. N.S. Datta, R. Kolailat, G.J. Pettway, J.E. Berry, L.K. McCauley, PTH and PTHrP induces mitogen activated protein kinase phosphatase-1 in differentiated bone marrow stromal cells, mouse osteoblast and cementoblast cell lines. J. Bone Miner. Res. 22, S137 (2007)

    Google Scholar 

  20. R. Lindsay, H. Zhou, F. Cosman, J. Nieves, D.W. Dempster, A.B. Hodsman, Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J. Bone Miner. Res. 22, 495–502 (2007)

    PubMed  CAS  Google Scholar 

  21. N.S. Datta, C. Chen, J.E. Berry, L.K. McCauley, PTHrP signaling targets cyclin D1 and induces osteoblastic cell growth arrest. J. Bone Miner. Res. 20, 1051–1064 (2005)

    PubMed  CAS  Google Scholar 

  22. N.S. Datta, R. Kolailat, A. Fite, G. Pettway, A.B. Abou-Samra, Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell. Signal. 22, 457–466 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  23. G.J. Pettway, J.A. Meganck, A.J. Koh, E.T. Keller, S.A. Goldstein, L.K. McCauley, Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone 42, 806–818 (2008)

    PubMed  CAS  PubMed Central  Google Scholar 

  24. J.M. Hock, L.A. Fitzpatrick, J.P. Bilezikian, Actions of parathyroid hormone, in Principles of Bone Biology, 2nd edn., ed. by J.P. Bilezikian, L.G. Raisz, G.A. Rodan (Academic Press, San Diego, 2002), pp. 463–482

    Google Scholar 

  25. J.M. Hock, V. Krishnan, J.E. Onyia, J.P. Bidwell, J. Milas, D. Stanislaus, Osteoblast apoptosis and bone turnover. J. Bone Miner. Res. 16, 975–984 (2001)

    PubMed  CAS  Google Scholar 

  26. R.L. Jilka, R.S. Weinstein, T. Bellido, P. Roberson, A.M. Parfitt, S.C. Manolagas, Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest. 104, 439–446 (1999)

    PubMed  CAS  PubMed Central  Google Scholar 

  27. S.C. Manolagas, Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115–137 (2000)

    PubMed  CAS  Google Scholar 

  28. H. Dobnig, R.T. Turner, Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136, 3632–3638 (1995)

    PubMed  CAS  Google Scholar 

  29. D. Leaffer, M. Sweeney, L.A. Kellerman, Z. Avnur, J.L. Krstenansky, B.H. Vickery, J.P. Caulfield, Modulation of osteogenic cell ultrastructure by RS-23581, an analog of human parathyroid hormone (PTH)-related peptide-(1–34), and bovine PTH-(1–34). Endocrinology 136, 3624–3631 (1995)

    PubMed  CAS  Google Scholar 

  30. Y. Rhee, M.R. Allen, K. Condon, V. Lezcano, A.C. Ronda, C. Galli, N. Olivos, G. Passeri, C.A. O’Brien, N. Bivi, L.I. Plotkin, T. Bellido, PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling. J. Bone Miner. Res. 26, 1035–1046 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  31. D. Goltzman, Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone. Arch. Biochem. Biophys. 473, 218–224 (2008)

    PubMed  CAS  Google Scholar 

  32. N.S. Datta, A.B. Abou-Samra, PTH and PTHrP signaling in osteoblasts. Cell. Signal. 21, 1245–1254 (2009)

    PubMed  CAS  PubMed Central  Google Scholar 

  33. L.K. McCauley, T.J. Martin, Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J. Bone Miner. Res. 27, 1231–1239 (2012)

    PubMed  CAS  Google Scholar 

  34. Y.Y. Kong, U. Feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C. Capparelli, J. Li, R. Elliott, S. McCabe, T. Wong, G. Campagnuolo, E. Moran, E.R. Bogoch, G. Van, L.T. Nguyen, P.S. Ohashi, D.L. Lacey, E. Fish, W.J. Boyle, J.M. Penninger, Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999)

    PubMed  CAS  Google Scholar 

  35. Y.T. Teng, H. Nguyen, X. Gao, Y.Y. Kong, R.M. Gorczynski, B. Singh, R.P. Ellen, J.M. Penninger, Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest. 106, R59–R67 (2000)

    PubMed  CAS  PubMed Central  Google Scholar 

  36. R. Pacifici, Osteoimmunology and its implications for transplantation. Am. J. Transpl. 13, 2245–2254 (2013)

    CAS  Google Scholar 

  37. R. Baum, E.M. Gravallese, Impact of inflammation on the osteoblast in rheumatic diseases. Curr. Osteoporos. Rep. 12, 9–16 (2014)

    PubMed  Google Scholar 

  38. A. Di Benedetto, I. Gigante, S. Colucci, M. Grano, Periodontal disease: linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013, 503754 (2013)

    PubMed  PubMed Central  Google Scholar 

  39. J.L. Funk, A role for parathyroid hormone-related protein in the pathogenesis of inflammatory/autoimmune diseases. Int. Immunopharmacol. 1, 1101–1121 (2001)

    PubMed  CAS  Google Scholar 

  40. R. Alemzadeh, J. Kichler, Parathyroid hormone is associated with biomarkers of insulin resistance and inflammation, independent of vitamin D status, in obese adolescents. Metab. Syndr. Relat. Disord. 10, 422–429 (2012)

    PubMed  CAS  Google Scholar 

  41. V. Bhatia, S.O. Kim, J.F. Aronson, C. Chao, M.R. Hellmich, M. Falzon, Role of parathyroid hormone-related protein in the pro-inflammatory and pro-fibrogenic response associated with acute pancreatitis. Regul. Pept. 175, 49–60 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  42. H. Kaji, Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 16, 272–277 (2013)

    PubMed  Google Scholar 

  43. J.D. Schipilow, H.M. Macdonald, A.M. Liphardt, M. Kan, S.K. Boyd, Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone 56, 281–289 (2013)

    PubMed  CAS  Google Scholar 

  44. M.F. Barbe, S. Gallagher, V.S. Massicotte, M. Tytell, S.N. Popoff, A.E. Barr-Gillespie, The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet. Disord. 14, 303 (2013)

    PubMed  PubMed Central  Google Scholar 

  45. J. Rittweger, G. Beller, J. Ehrig, C. Jung, U. Koch, J. Ramolla, F. Schmidt, D. Newitt, S. Majumdar, H. Schiessl, D. Felsenberg, Bone-muscle strength indices for the human lower leg. Bone 27, 319–326 (2000)

    PubMed  CAS  Google Scholar 

  46. E. Schoenau, From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J. Musculoskelet. Neuronal Interact. 5, 232–238 (2005)

    PubMed  CAS  Google Scholar 

  47. M.H. Edwards, C.L. Gregson, H.P. Patel, K.A. Jameson, N.C. Harvey, A.A. Sayer, E.M. Dennison, C. Cooper, Muscle size, strength, and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J. Bone Miner. Res. 28, 2295–2304 (2013)

    PubMed  PubMed Central  Google Scholar 

  48. C. Cipriani, E. Romagnoli, V. Carnevale, I. Raso, A. Scarpiello, M. Angelozzi, A. Tancredi, S. Russo, F. De Lucia, J. Pepe, S. Minisola, Muscle strength and bone in healthy women: effect of age and gonadal status. Hormones (Athens) 11, 325–332 (2012)

    Google Scholar 

  49. J.H. Park, K.H. Park, S. Cho, Y.S. Choi, S.K. Seo, B.S. Lee, H.S. Park, Concomitant increase in muscle strength and bone mineral density with decreasing IL-6 levels after combination therapy with alendronate and calcitriol in postmenopausal women. Menopause 20, 747–753 (2013)

    PubMed  Google Scholar 

  50. H.T. Ma, J.F. Griffith, L. Xu, P.C. Leung, The functional muscle-bone unit in subjects of varying BMD. Osteoporos. Int. 25, 999–1004 (2014)

    PubMed  CAS  Google Scholar 

  51. V. Bokan, Muscle weakness and other late complications of diabetic polyneuropathy. Acta Clin. Croat. 50, 351–355 (2011)

    PubMed  Google Scholar 

  52. T.T. van Sloten, H.H. Savelberg, I.G. Duimel-Peeters, K. Meijer, R.M. Henry, C.D. Stehouwer, N.C. Schaper, Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diab. Res. Clin. Pract. 91, 32–39 (2011)

    Google Scholar 

  53. P. Vestergaard, Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos. Int. 18, 427–444 (2007)

    PubMed  CAS  Google Scholar 

  54. D.R. Sinacore, M.K. Hastings, K.L. Bohnert, F.A. Fielder, D.T. Villareal, V.P. Blair 3rd, J.E. Johnson, Inflammatory osteolysis in diabetic neuropathic (charcot) arthropathies of the foot. Phys. Ther. 88, 1399–1407 (2008)

    PubMed  PubMed Central  Google Scholar 

  55. G. Mabilleau, M.E. Edmonds, Role of neuropathy on fracture healing in Charcot neuro-osteoarthropathy. J. Musculoskelet. Neuronal Interact. 10, 84–91 (2010)

    PubMed  CAS  Google Scholar 

  56. S. Balducci, M. Sacchetti, G. Orlando, L. Salvi, L. Pugliese, G. Salerno, V. D’Errico, C. Iacobini, F.G. Conti, S. Zanuso, A. Nicolucci, G. Pugliese, Correlates of muscle strength in diabetes: The study on the assessment of determinants of muscle and bone strength abnormalities in diabetes (SAMBA). Nutr. Metab. Cardiovasc. Dis. 23(11), 1037–1042 (2013)

    Google Scholar 

  57. B. Roy, Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J. Diabet. 4, 101–113 (2013)

    Google Scholar 

  58. L. Gennari, D. Merlotti, R. Valenti, E. Ceccarelli, M. Ruvio, M.G. Pietrini, C. Capodarca, M.B. Franci, M.S. Campagna, A. Calabro, D. Cataldo, K. Stolakis, F. Dotta, R. Nuti, Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 1737–1744 (2012)

    PubMed  CAS  Google Scholar 

  59. S. Judex, C.T. Rubin, Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J. Musculoskelet. Neuronal Interact. 10, 3–11 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  60. P. Juffer, R.T. Jaspers, P. Lips, A.D. Bakker, J. Klein-Nulend, Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am. J. Physiol. Endocrinol. Metab. 302, E389–E395 (2012)

    PubMed  CAS  Google Scholar 

  61. L. Ferrucci, M. Baroni, A. Ranchelli, F. Lauretani, M. Maggio, P. Mecocci, C. Ruggiero, Interaction between bone and muscle in older persons with mobility limitations. Curr. Pharm. Des. (2013) [Epub ahead of print]

  62. L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  63. K.R. Chien, G. Karsenty, Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120, 533–544 (2005)

    PubMed  CAS  Google Scholar 

  64. B.K. Pedersen, M.A. Febbraio, Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008)

    PubMed  CAS  Google Scholar 

  65. B.K. Pedersen, F. Edward, Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J. Appl. Physiol. 107, 1006–1014 (2009)

    PubMed  CAS  Google Scholar 

  66. W.M. Jackson, A.B. Aragon, J.D. Bulken-Hoover, L.J. Nesti, R.S. Tuan, Putative heterotopic ossification progenitor cells derived from traumatized muscle. J. Orthop. Res. 27, 1645–1651 (2009)

    PubMed  CAS  PubMed Central  Google Scholar 

  67. W.S. Zundel, F.H. Tyler, The muscular dystrophies. N. Engl. J. Med. 273, 537–543 (1965)

    PubMed  CAS  Google Scholar 

  68. T. Harslof, M. Frost, T.L. Nielsen, L.B. Husted, M. Nyegaard, K. Brixen, A.D. Borglum, L. Mosekilde, M. Andersen, L. Rejnmark, B.L. Langdahl, Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians. Calcif. Tissue Int. 92, 467–476 (2013)

    PubMed  CAS  Google Scholar 

  69. B. Buehring, N. Binkley, Myostatin: the holy grail for muscle, bone, and fat? Curr. Osteoporos. Rep. 11, 407–414 (2013)

    PubMed  CAS  Google Scholar 

  70. M.N. Elkasrawy, M.W. Hamrick, Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J. Musculoskelet. Neuronal Interact. 10, 56–63 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  71. M. Elkasrawy, S. Fulzele, M. Bowser, K. Wenger, M. Hamrick, Myostatin (GDF-8) inhibits chondrogenesis and chondrocyte proliferation in vitro by suppressing Sox-9 expression. Growth Factors 29, 253–262 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  72. M.W. Hamrick, The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. BoneKEy Rep. 1, 60 (2012)

    PubMed  PubMed Central  Google Scholar 

  73. M.W. Hamrick, P.L. McNeil, S.L. Patterson, Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 10, 64–70 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  74. M. Hamrick, JMNI special issue: basic science and mechanisms of muscle-bone interactions. J. Musculoskelet. Neuronal Interact. 10, 1–2 (2010)

    PubMed  CAS  Google Scholar 

  75. H. Kaufman, A. Reznick, H. Stein, M. Barak, G. Maor, The biological basis of the bone-muscle inter-relationship in the algorithm of fracture healing. Orthopedics 31, 751 (2008)

    PubMed  CAS  Google Scholar 

  76. K. Walsh, Adipokines, myokines and cardiovascular disease. Circ. J. 73, 13–18 (2009)

    PubMed  Google Scholar 

  77. K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Katagiri, T. Sugimoto, S. Seino, H. Kaji, Role of osteoglycin in the linkage between muscle and bone. J. Biol. Chem. 287, 11616–11628 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  78. M.C. Gozo, P.J. Aspuria, D.J. Cheon, A.E. Walts, D. Berel, N. Miura, B.Y. Karlan, S. Orsulic, Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis. Cell Death Differ. 20, 1031–1042 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  79. W. Qin, L. Sun, J. Cao, Y. Peng, L. Collier, Y. Wu, G. Creasey, J. Li, Y. Qin, J. Jarvis, W.A. Bauman, M. Zaidi, C. Cardozo, The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures. J. Biol. Chem. 288, 13511–13521 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  80. K.D. Schluter, H.M. Piper, Cardiovascular actions of parathyroid hormone and parathyroid hormone-related peptide. Cardiovasc. Res. 37, 34–41 (1998)

    PubMed  CAS  Google Scholar 

  81. I. Tastan, R. Schreckenberg, S. Mufti, Y. Abdallah, H.M. Piper, K.D. Schluter, Parathyroid hormone improves contractile performance of adult rat ventricular cardiomyocytes at low concentrations in a non-acute way. Cardiovasc. Res. 82, 77–83 (2009)

    PubMed  CAS  Google Scholar 

  82. M.R. Rutledge, V. Farah, A.A. Adeboye, M.R. Seawell, S.K. Bhattacharya, K.T. Weber, Parathyroid hormone, a crucial mediator of pathologic cardiac remodeling in aldosteronism. Cardiovasc. Drugs Ther. 27, 161–170 (2013)

    PubMed  CAS  Google Scholar 

  83. J. Jansen, P. Gres, C. Umschlag, F.R. Heinzel, H. Degenhardt, K.D. Schluter, G. Heusch, R. Schulz, Parathyroid hormone-related peptide improves contractile function of stunned myocardium in rats and pigs. Am. J. Physiol. Heart Circ. Physiol. 284, H49–H55 (2003)

    PubMed  CAS  Google Scholar 

  84. J. Qian, M.C. Colbert, D. Witte, C.Y. Kuan, E. Gruenstein, H. Osinska, B. Lanske, H.M. Kronenberg, T.L. Clemens, Midgestational lethality in mice lacking the parathyroid hormone (PTH)/PTH-related peptide receptor is associated with abrupt cardiomyocyte death. Endocrinology 144, 1053–1061 (2003)

    PubMed  CAS  Google Scholar 

  85. Y. Fei, G. Gronowicz, M.M. Hurley, Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr. Pharm. Des. 19, 3354–3363 (2013)

    PubMed  CAS  Google Scholar 

  86. Y. Fei, M.M. Hurley, Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J. Cell. Physiol. 227, 3539–3545 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  87. S. Yakar, H.W. Courtland, D. Clemmons, IGF-1 and bone: new discoveries from mouse models. J. Bone Miner. Res. 25, 2543–2552 (2010)

    PubMed  PubMed Central  Google Scholar 

  88. D.R. Clemmons, The diagnosis and treatment of growth hormone deficiency in adults. Curr. Opin. Endocrinol. Diabet. Obes. 17, 377–383 (2010)

    CAS  Google Scholar 

  89. A. Giustina, A. Barkan, P. Chanson, A. Grossman, A. Hoffman, E. Ghigo, F. Casanueva, A. Colao, S. Lamberts, M. Sheppard, S. Melmed, Guidelines for the treatment of growth hormone excess and growth hormone deficiency in adults. J. Endocrinol. Invest. 31, 820–838 (2008)

    PubMed  CAS  Google Scholar 

  90. L.E. Olson, C. Ohlsson, S. Mohan, The Role of GH/IGF-I-Mediated mechanisms in sex differences in cortical bone size in mice. Calcif. Tissue Int. 88, 1–8 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  91. T. Brioche, R.A. Kireev, S. Cuesta, A. Gratas-Delamarche, J.A. Tresguerres, M.C. Gomez-Cabrera, J. Vina, Growth hormone replacement therapy prevents sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses. J. Gerontol. Ser. A 2013, 1079–5006 (2013)

    Google Scholar 

  92. K. Ho, V. Chikani, Action of GH on skeletal muscle: molecular and functional mechanisms. J. Mol. Endocrinol. 52, R107–R123 (2013)

    PubMed  Google Scholar 

  93. A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29, 535–559 (2008)

    PubMed  CAS  PubMed Central  Google Scholar 

  94. D.D. Bikle, Y. Wang, Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Curr. Mol. Pharmacol. 5, 135–142 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  95. G. Lombardi, C. Di Somma, L. Vuolo, E. Guerra, E. Scarano, A. Colao, Role of IGF-I on PTH effects on bone. J. Endocrinol. Invest. 33, 22–26 (2010)

    PubMed  CAS  Google Scholar 

  96. E. Schoenau, Bone mass increase in puberty: what makes it happen? Horm. Res. 65(Suppl 2), 2–10 (2006)

    PubMed  CAS  Google Scholar 

  97. C. Rommel, S.C. Bodine, B.A. Clarke, R. Rossman, L. Nunez, T.N. Stitt, G.D. Yancopoulos, D.J. Glass, Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 3, 1009–1013 (2001)

    PubMed  CAS  Google Scholar 

  98. D.R. Vyas, E.E. Spangenburg, T.W. Abraha, T.E. Childs, F.W. Booth, GSK-3beta negatively regulates skeletal myotube hypertrophy. Am. J. Physiol. Cell Physiol. 283, C545–C551 (2002)

    PubMed  CAS  Google Scholar 

  99. C.G. Tahimic, Y. Wang, D.D. Bikle, Anabolic effects of IGF-1 signaling on the skeleton. Front. Endocrinol. 4, 6 (2013)

    Google Scholar 

  100. K.B. Hagen, H. Dagfinrud, R.H. Moe, N. Osteras, I. Kjeken, M. Grotle, G. Smedslund, Exercise therapy for bone and muscle health: an overview of systematic reviews. BMC Med. 10, 167 (2012)

    PubMed  PubMed Central  Google Scholar 

  101. S. Franckhauser, I. Elias, V. Rotter Sopasakis, T. Ferre, I. Nagaev, C.X. Andersson, J. Agudo, J. Ruberte, F. Bosch, U. Smith, Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia 51, 1306–1316 (2008)

    PubMed  CAS  Google Scholar 

  102. K. Kayamori, K. Sakamoto, T. Nakashima, H. Takayanagi, K. Morita, K. Omura, S.T. Nguyen, Y. Miki, T. Iimura, A. Himeno, T. Akashi, H. Yamada-Okabe, E. Ogata, A. Yamaguchi, Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells. Am. J. Pathol. 176, 968–980 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  103. C.J. Rosen, A. Klibanski, Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122, 409–414 (2009)

    PubMed  CAS  Google Scholar 

  104. A. Cohen, D.W. Dempster, R.R. Recker, J.M. Lappe, H. Zhou, A. Zwahlen, R. Muller, B. Zhao, X. Guo, T. Lang, I. Saeed, X.S. Liu, X.E. Guo, S. Cremers, C.J. Rosen, E.M. Stein, T.L. Nickolas, D.J. McMahon, P. Young, E. Shane, Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J. Clin. Endocrinol. Metab. 98, 2562–2572 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  105. A.J. Sogaard, K. Holvik, T.K. Omsland, G.S. Tell, C. Dahl, B. Schei, J.A. Falch, J.A. Eisman, H.E. Meyer, Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60-79 years followed for 8 years. Cohort of Norway. J. Intern. Med. (2014). doi:10.1111/joim.12230

  106. J.J. Cao, Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30 (2011)

    PubMed  PubMed Central  Google Scholar 

  107. M. Kawai, F.J. de Paula, C.J. Rosen, New insights into osteoporosis: the bone-fat connection. J. Intern. Med. 272, 317–329 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  108. M.A. Bredella, C.M. Gill, C.J. Rosen, A. Klibanski, M. Torriani, Positive effects of brown adipose tissue on femoral bone structure. Bone 58, 55–58 (2014)

    PubMed  CAS  Google Scholar 

  109. S. Rahman, Y. Lu, P.J. Czernik, C.J. Rosen, S. Enerback, B. Lecka-Czernik, Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 154, 2687–2701 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  110. A.V. Schwartz, S. Sigurdsson, T.F. Hue, T.F. Lang, T.B. Harris, C.J. Rosen, E. Vittinghoff, K. Siggeirsdottir, G. Sigurdsson, D. Oskarsdottir, K. Shet, L. Palermo, V. Gudnason, X. Li, Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J. Clin. Endocrinol. Metab. 98, 2294–2300 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  111. K.J. Motyl, K.A. Bishop, V.E. DeMambro, S.A. Bornstein, P. Le, M. Kawai, S. Lotinun, M.C. Horowitz, R. Baron, M.L. Bouxsein, C.J. Rosen, Altered thermogenesis and impaired bone remodeling in Misty mice. J. Bone Miner. Res. 28, 1885–1897 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  112. M.A. Bredella, P.K. Fazeli, B. Lecka-Czernik, C.J. Rosen, A. Klibanski, IGFBP-2 is a negative predictor of cold-induced brown fat and bone mineral density in young non-obese women. Bone 53, 336–339 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  113. M.A. Bredella, P.K. Fazeli, L.M. Freedman, G. Calder, H. Lee, C.J. Rosen, A. Klibanski, Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J. Clin. Endocrinol. Metab. 97, E584–E590 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  114. J. Mohiti-Ardekani, H. Soleymani-Salehabadi, M.B. Owlia, A. Mohiti, Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. J. Bone Miner. Metab. (2013) [Epub ahead of print]

  115. F.J. de Paula, M.C. Horowitz, C.J. Rosen, Novel insights into the relationship between diabetes and osteoporosis. Diabet. Metab. Res. Rev. 26, 622–630 (2010)

    Google Scholar 

  116. K. Fulzele, D.J. DiGirolamo, Z. Liu, J. Xu, J.L. Messina, T.L. Clemens, Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J. Biol. Chem. 282, 25649–25658 (2007)

    PubMed  CAS  Google Scholar 

  117. M. Ferron, J. Wei, T. Yoshizawa, A. Del Fattore, R.A. DePinho, A. Teti, P. Ducy, G. Karsenty, Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  118. J. Jortay, M. Senou, M. Abou-Samra, L. Noel, A. Robert, M.C. Many, S.M. Brichard, Adiponectin and skeletal muscle: pathophysiological implications in metabolic stress. Am. J. Pathol. 181, 245–256 (2012)

    PubMed  CAS  Google Scholar 

  119. G. Karsenty, Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 4, 341–348 (2006)

    PubMed  CAS  Google Scholar 

  120. L. Fu, M.S. Patel, G. Karsenty, The circadian modulation of leptin-controlled bone formation. Prog. Brain Res. 153, 177–188 (2006)

    PubMed  CAS  Google Scholar 

  121. T.D. Challa, Y. Rais, E.M. Ornan, Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol. Cell. Endocrinol. 323, 282–291 (2010)

    PubMed  CAS  Google Scholar 

  122. L. Basurto, R. Galvan, N. Cordova, R. Saucedo, C. Vargas, S. Campos, E. Halley, F. Avelar, A. Zarate, Adiponectin is associated with low bone mineral density in elderly men. Eur. J. Endocrinol. 160, 289–293 (2009)

    PubMed  CAS  Google Scholar 

  123. J.B. Richards, A.M. Valdes, K. Burling, U.C. Perks, T.D. Spector, Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 92, 1517–1523 (2007)

    PubMed  CAS  Google Scholar 

  124. K.W. Oh, W.Y. Lee, E.J. Rhee, K.H. Baek, K.H. Yoon, M.I. Kang, E.J. Yun, C.Y. Park, S.H. Ihm, M.G. Choi, H.J. Yoo, S.W. Park, The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin. Endocrinol. 63, 131–138 (2005)

    CAS  Google Scholar 

  125. M.R. Araneta, D. von Muhlen, E. Barrett-Connor, Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo study. J. Bone Miner. Res. 24, 2016–2022 (2009)

    PubMed  PubMed Central  Google Scholar 

  126. E. Biver, C. Salliot, C. Combescure, L. Gossec, P. Hardouin, I. Legroux-Gerot, B. Cortet, Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96, 2703–2713 (2011)

    PubMed  CAS  Google Scholar 

  127. G.A. Williams, Y. Wang, K.E. Callon, M. Watson, J.M. Lin, J.B. Lam, J.L. Costa, A. Orpe, N. Broom, D. Naot, I.R. Reid, J. Cornish, In vitro and in vivo effects of adiponectin on bone. Endocrinology 150, 3603–3610 (2009)

    PubMed  CAS  Google Scholar 

  128. X.H. Luo, L.J. Guo, H. Xie, L.Q. Yuan, X.P. Wu, H.D. Zhou, E.Y. Liao, Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J. Bone Miner. Res. 21, 1648–1656 (2006)

    PubMed  CAS  Google Scholar 

  129. H.W. Lee, S.Y. Kim, A.Y. Kim, E.J. Lee, J.Y. Choi, J.B. Kim, Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 27, 2254–2262 (2009)

    PubMed  CAS  Google Scholar 

  130. Q. Tu, J. Zhang, L.Q. Dong, E. Saunders, E. Luo, J. Tang, J. Chen, Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J. Biol. Chem. 286, 12542–12553 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  131. X.H. Luo, L.J. Guo, L.Q. Yuan, H. Xie, H.D. Zhou, X.P. Wu, E.Y. Liao, Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309, 99–109 (2005)

    PubMed  CAS  Google Scholar 

  132. M. Kawai, C.J. Rosen, The IGF-I regulatory system and its impact on skeletal and energy homeostasis. J. Cell. Biochem. 111, 14–19 (2010)

    PubMed  CAS  PubMed Central  Google Scholar 

  133. R. Tenta, M.D. Kontogianni, N. Yiannakouris, Association between circulating levels of adiponectin and indices of bone mass and bone metabolism in middle-aged post-menopausal women. J. Endocrinol. Invest. 35, 306–311 (2012)

    PubMed  CAS  Google Scholar 

  134. I. Kanazawa, T. Yamaguchi, T. Sugimoto, Baseline serum total adiponectin level is positively associated with changes in bone mineral density after 1-year treatment of type 2 diabetes mellitus. Metabolism 59, 1252–1256 (2010)

    PubMed  CAS  Google Scholar 

  135. I. Kanazawa, T. Yamaguchi, M. Yamauchi, M. Yamamoto, S. Kurioka, S. Yano, T. Sugimoto, Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 94, 3031–3037 (2009)

    PubMed  CAS  Google Scholar 

  136. J. Cornish, K.E. Callon, U. Bava, C. Lin, D. Naot, B.L. Hill, A.B. Grey, N. Broom, D.E. Myers, G.C. Nicholson, I.R. Reid, Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 175, 405–415 (2002)

    PubMed  CAS  Google Scholar 

  137. T. Thomas, B. Burguera, Is leptin the link between fat and bone mass? J. Bone Miner. Res. 17, 1563–1569 (2002)

    PubMed  CAS  Google Scholar 

  138. G. Karsenty, F. Oury, The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J. Clin. Endocrinol. Metab. 95, 4795–4801 (2010)

    PubMed  CAS  Google Scholar 

  139. R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)

    PubMed  CAS  Google Scholar 

  140. K.J. Motyl, C.J. Rosen, Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie 94, 2089–2096 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  141. K.E. Barbour, J.M. Zmuda, R. Boudreau, E.S. Strotmeyer, M.J. Horwitz, R.W. Evans, A.M. Kanaya, T.B. Harris, D.C. Bauer, J.A. Cauley, Adipokines and the risk of fracture in older adults. J. Bone Miner. Res. 26, 1568–1576 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  142. J.M. Lin, D. Naot, M. Watson, J.L. Costa, I.R. Reid, J. Cornish, A. Grey, Skeletal actions of fasting-induced adipose factor (FIAF). Endocrinology 154, 4685–4694 (2013)

    PubMed  CAS  Google Scholar 

  143. L. Wattanachanya, W.D. Lu, R.K. Kundu, L. Wang, M.J. Abbott, D. O’Carroll, T. Quertermous, R.A. Nissenson, Increased bone mass in mice lacking the adipokine apelin. Endocrinology 154, 2069–2080 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  144. L. Thommesen, A.K. Stunes, M. Monjo, K. Grosvik, M.V. Tamburstuen, E. Kjobli, S.P. Lyngstadaas, J.E. Reseland, U. Syversen, Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J. Cell. Biochem. 99, 824–834 (2006)

    PubMed  CAS  Google Scholar 

  145. H. Zhang, H. Xie, Q. Zhao, G.Q. Xie, X.P. Wu, E.Y. Liao, X.H. Luo, Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J. Endocrinol. Invest. 33, 707–711 (2010)

    PubMed  CAS  Google Scholar 

  146. H. Xie, S.Y. Tang, X.H. Luo, J. Huang, R.R. Cui, L.Q. Yuan, H.D. Zhou, X.P. Wu, E.Y. Liao, Insulin-like effects of visfatin on human osteoblasts. Calcif. Tissue Int. 80, 201–210 (2007)

    PubMed  CAS  Google Scholar 

  147. A.R. Moschen, S. Geiger, R. Gerner, H. Tilg, Pre-B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease. Mutat. Res. 690, 95–101 (2010)

    PubMed  CAS  Google Scholar 

  148. H. Xie, P.L. Xie, X.H. Luo, X.P. Wu, H.D. Zhou, S.Y. Tang, E.Y. Liao, Omentin-1 exerts bone-sparing effect in ovariectomized mice. Osteoporos. Int. 23, 1425–1436 (2012)

    PubMed  CAS  Google Scholar 

  149. B.K. Tan, S. Pua, F. Syed, K.C. Lewandowski, J.P. O’Hare, H.S. Randeva, Decreased plasma omentin-1 levels in Type 1 diabetes mellitus. Diabet. Med. 25, 1254–1255 (2008)

    PubMed  CAS  Google Scholar 

  150. B.K. Tan, R. Adya, S. Farhatullah, K.C. Lewandowski, P. O’Hare, H. Lehnert, H.S. Randeva, Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes 57, 801–808 (2008)

    PubMed  CAS  Google Scholar 

  151. D.T. Villareal, C.M. Apovian, R.F. Kushner, S. Klein, Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am. J. Clin. Nutr. 82, 923–934 (2005)

    PubMed  CAS  Google Scholar 

  152. R. Armamento-Villareal, C. Sadler, N. Napoli, K. Shah, S. Chode, D.R. Sinacore, C. Qualls, D.T. Villareal, Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 27, 1215–1221 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  153. I.A. Hosny, H.S. Elghawabi, W.B. Younan, A.A. Sabbour, M.A. Gobrial, Beneficial impact of aerobic exercises on bone mineral density in obese premenopausal women under caloric restriction. Skeletal Radiol. 41, 423–427 (2012)

    PubMed  Google Scholar 

  154. K. Shah, R. Armamento-Villareal, N. Parimi, S. Chode, D.R. Sinacore, T.N. Hilton, N. Napoli, C. Qualls, D.T. Villareal, Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Miner. Res. 26, 2851–2859 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  155. D.T. Villareal, L. Fontana, E.P. Weiss, S.B. Racette, K. Steger-May, K.B. Schechtman, S. Klein, J.O. Holloszy, Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch. Intern. Med. 166, 2502–2510 (2006)

    PubMed  Google Scholar 

  156. M. Cifuentes, C.S. Riedt, R.E. Brolin, M.P. Field, R.M. Sherrell, S.A. Shapses, Weight loss and calcium intake influence calcium absorption in overweight postmenopausal women. Am. J. Clin. Nutr. 80, 123–130 (2004)

    PubMed  CAS  PubMed Central  Google Scholar 

  157. I.R. Reid, Relationships among body mass, its components, and bone. Bone 31, 547–555 (2002)

    PubMed  CAS  Google Scholar 

  158. R.T. Brookheart, C.I. Michel, J.E. Schaffer, As a matter of fat. Cell Metab. 10, 9–12 (2009)

    PubMed  CAS  PubMed Central  Google Scholar 

  159. R.W. Schwenk, H. Vogel, A. Schurmann, Genetic and epigenetic control of metabolic health. Mol. Metabol. 2, 337–347 (2013)

    CAS  Google Scholar 

  160. R.J. Fajardo, L. Karim, V.I. Calley, M.L. Bouxsein, A Review of Rodent Models of Type 2 Diabetic Skeletal Fragility. J. Bone Miner. Res. (2014). doi:10.1002/jbmr.2210

  161. T. Ong, O. Sahota, W. Tan, L. Marshall, A United Kingdom perspective on the relationship between body mass index (BMI) and bone health: a cross sectional analysis of data from the Nottingham Fracture Liaison Service. Bone 59, 207–210 (2014)

    PubMed  Google Scholar 

  162. B. Tran, N.D. Nguyen, J.R. Center, J.A. Eisman, T.V. Nguyen, Association between fat-mass-and-obesity-associated (FTO) gene and hip fracture susceptibility. Clin. Endocrinol. (2013). 10.1111/cen.12335

  163. L. McCabe, J. Zhang, S. Raehtz, Understanding the skeletal pathology of type 1 and 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr. 21, 187–206 (2011)

    PubMed  CAS  Google Scholar 

  164. G.A. Brockmann, N. Schafer, C. Hesse, S. Heise, C. Neuschl, A. Wagener, G.A. Churchill, R. Li, Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity. Physiol. Genomics 45, 817–826 (2013)

    PubMed  CAS  Google Scholar 

  165. A. Krings, S. Rahman, S. Huang, Y. Lu, P.J. Czernik, B. Lecka-Czernik, Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50, 546–552 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  166. G. Musso, Non-alcoholic fatty liver, adipose tissue, and the bone: a new triumvirate on the block. Endocrine 42, 237–239 (2012)

    PubMed  CAS  Google Scholar 

  167. B. Havekes, H.P. Sauerwein, Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone? Curr. Opin. Clin. Nutr. Metab. Care 13, 641–646 (2010)

    PubMed  CAS  Google Scholar 

  168. C.B. Confavreux, R.L. Levine, G. Karsenty, A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol. Cell. Endocrinol. 310, 21–29 (2009)

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Y.C. Hwang, I.K. Jeong, K.J. Ahn, H.Y. Chung, Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporos. Int. 23, 1337–1342 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  170. A. Aoki, T. Muneyuki, M. Yoshida, H. Munakata, S.E. Ishikawa, H. Sugawara, M. Kawakami, M. Kakei, Circulating osteocalcin is increased in early-stage diabetes. Diabet. Res. Clin. Pract. 92, 181–186 (2011)

    CAS  Google Scholar 

  171. I. Kanazawa, T. Yamaguchi, M. Yamauchi, M. Yamamoto, S. Kurioka, S. Yano, T. Sugimoto, Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos. Int. 22, 187–194 (2011)

    PubMed  CAS  Google Scholar 

  172. J.R. Villafan-Bernal, S. Sanchez-Enriquez, J.F. Munoz-Valle, Molecular modulation of osteocalcin and its relevance in diabetes (Review). Int. J. Mol. Med. 28, 283–293 (2011)

    PubMed  CAS  Google Scholar 

  173. H.T. Viljakainen, M. Pekkinen, E. Saarnio, H. Karp, C. Lamberg-Allardt, O. Makitie, Dual effect of adipose tissue on bone health during growth. Bone 48, 212–217 (2011)

    PubMed  CAS  Google Scholar 

  174. M. Di Monaco, C. Castiglioni, F. Vallero, R. Di Monaco, R. Tappero, Parathyroid hormone is significantly associated with body fat compartment in men but not in women following a hip fracture. Aging Clin. Exp. Res. 25, 371–376 (2013)

    PubMed  Google Scholar 

  175. E. Ishimura, S. Okuno, N. Tsuboniwa, K. Norimine, S. Fukumoto, K. Yamakawa, T. Yamakawa, S. Shoji, Y. Nishizawa, M. Inaba, Significant positive association between parathyroid hormone and fat mass and lean mass in chronic hemodialysis patients. J. Clin. Endocrinol. Metab. 98, 1264–1270 (2013)

    PubMed  CAS  Google Scholar 

  176. M.F. McCarty, C.A. Thomas, PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin D, and alcohol on body weight. Med. Hypotheses 61, 535–542 (2003)

    PubMed  CAS  Google Scholar 

  177. A.P. Sage, J. Lu, E. Atti, S. Tetradis, M.G. Ascenzi, D.J. Adams, L.L. Demer, Y. Tintut, Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J. Bone Miner. Res. 26, 1197–1206 (2011)

    PubMed  CAS  PubMed Central  Google Scholar 

  178. A. Bellia, G. Marinoni, M. D’Adamo, V. Guglielmi, M. Lombardo, G. Donadel, P. Gentileschi, D. Lauro, M. Federici, R. Lauro, P. Sbraccia, Parathyroid hormone and insulin resistance in distinct phenotypes of severe obesity: a cross-sectional analysis in middle-aged men and premenopausal women. J. Clin. Endocrinol. Metab. 97, 4724–4732 (2012)

    PubMed  CAS  Google Scholar 

  179. M. Di Monaco, C. Castiglioni, F. Vallero, R. Di Monaco, R. Tappero, Parathyroid hormone response to severe vitamin D deficiency is sex associated: an observational study of 571 hip fracture inpatients. J. Nutr. Health Aging 17, 180–184 (2013)

    PubMed  CAS  Google Scholar 

  180. M. Di Monaco, F. Vallero, R. Di Monaco, R. Tappero, A. Cavanna, Fat mass and skeletal muscle mass in hip-fracture women: a cross-sectional study. Maturitas 56, 404–410 (2007)

    PubMed  Google Scholar 

  181. M. Romero, A. Ortega, N. Olea, M.I. Arenas, A. Izquierdo, J. Bover, P. Esbrit, R.J. Bosch, Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy. J. Diabet. Res. 2013, 162846 (2013)

    Google Scholar 

  182. J.J. Wysolmerski, Parathyroid hormone-related protein: an update. J. Clin. Endocrinol. Metab. 97, 2947–2956 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  183. X.L. Ye, C.F. Lu, Association of polymorphisms in the leptin and leptin receptor genes with inflammatory mediators in patients with osteoporosis. Endocrine 44, 481–488 (2013)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author was partially supported by the grants from The Office of The Vice President for Research (OVPR), Cardiovascular Research Institute (CVRI), and Institutional funding, Wayne State University, during writing of this manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabanita S. Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, N.S. Muscle–bone and fat–bone interactions in regulating bone mass: do PTH and PTHrP play any role?. Endocrine 47, 389–400 (2014). https://doi.org/10.1007/s12020-014-0273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0273-3

Keywords

Navigation