Skip to main content

Advertisement

Log in

Assessment of early renal damage in diabetic rhesus monkeys

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The objectives of the study were to improve the model system of diabetic nephropathy in nonhuman primates and assess the early renal damage. Diabetes was induced in monkeys by streptozotocin, and the animals were administered exogenous insulin to control blood glucose (BG). Animals were divided into four groups, including the normal group (N = 3), group A (streptozotocin diabetic model with control of BG < 10 mmol/L, N = 3), group B (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L, N = 4), and group C (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L and high-sodium and high-fat diet, N = 4). The following parameters were evaluated: (1) blood biochemistry and routine urinalysis, (2) color Doppler ultrasound, (3) angiography, (4) renal biopsy, and (5) renal fibrosis-related gene expression levels. Animals in group C developed progressive histologic changes with typical diabetic nephropathy resembling diabetic nephropathy in human patients and exhibited accelerated development of diabetic nephropathy compared with other nonhuman primate models. Significant changes in the expression of the Smad2/3 gene and eNOS in renal tissue were also observed in the early stage of diabetic nephropathy. In conclusion, our model is an excellent model of diabetic nephropathy for understanding the pathogenesis of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Dronavalli, I. Duka, G.L. Bakris, The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4(8), 444–452 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. C.F. Howard Jr, Nonhuman primates as models for the study of human diabetes mellitus. Diabetes 31(Suppl 1 Pt 2), 37–42 (1982)

    Article  PubMed  Google Scholar 

  3. S.E. Thomson, S.V. McLennan, P.D. Kirwan, S.J. Heffernan, A. Hennessy, D.K. Yue, S.M. Twigg, Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy. J. Diabetes Complic. 22(4), 284–294 (2008)

    Article  Google Scholar 

  4. M.C. Thomas, J. Moran, C. Forsblom, V. Harjutsalo, L. Thorn, A. Ahola, J. Wadén, N. Tolonen, M. Saraheimo, D. Gordin, P.H. Groop, FinnDiane Study Group, The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34(4), 861–866 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. J.M. Luther, Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23(1), 10–12 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. A.D. Dobrian, S.D. Schriver, T. Lynch, R.L. Prewitt, Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am. J. Physiol. Renal. Physiol. 285(4), F619–F628 (2003). Epub 2003 Jun 10

    CAS  PubMed  Google Scholar 

  7. K. Alexandraki, C. Piperi, C. Kalofoutis, J. Singh, A. Alaveras, A. Kalofoutis, Inflammatory process in type 2 diabetes: The role of cytokines. Ann. N. Y. Acad. Sci. 1084, 89–117 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. K. Kalantarinia, A.S. Awad, H.M. Siragy, Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidiabetic Nephrop. Int. 64(4), 1208–1213 (2003)

    CAS  Google Scholar 

  9. A. Nakamura, K. Shikata, M. Hiramatsu, T. Nakatou, T. Kitamura, J. Wada, T. Itoshima, H. Makino, Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28(12), 2890–2895 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. G.H. Tesch, MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 294(4), F697–F701 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. A.C. Chung, H.Y. Lan, Chemokines in renal injury. J. Am. Soc. Nephrol. 22(5), 802–809 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. T. Nakagawa, W. Sato, O. Glushakova, M. Heinig, T. Clarke, M. Campbell-Thompson, Y. Yuzawa, M.A. Atkinson, R.J. Johnson, B. Croker, Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18(2), 539–550 (2007). Epub 2007 Jan 3

    Article  CAS  PubMed  Google Scholar 

  13. M. Tong, Y. Wang, Y. Wang, H. Chen, C. Wang, L. Yang, J. Axelsson, B. Lindholm, Genistein attenuates advanced glycation end product-induced expression of fibronectin and connective tissue growth factor. Am. J. Nephrol. 36(1), 34–40 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. I.S. Park, H. Kiyomoto, S.L. Abboud, H.E. Abboud, Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 46(3), 473–480 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. M. Sato, Y. Muragaki, S. Saika, A.B. Roberts, A. Ooshima, Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112(10), 1486–1494 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. X. Jin, L. Zeng, S. He, Y. Chen, B. Tian, G. Mai, G. Yang, L. Wei, Y. Zhang, H. Li, L. Wang, C. Qiao, J. Cheng, Y. Lu, Comparison of single high-dose streptozotocin with partial pancreatectomy combined with low-dose streptozotocin for diabetes induction in rhesus monkeys. Exp. Biol. Med. (Maywood). 235(7), 877–885 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. H. Sugimoto, V.S. LeBleu, D. Bosukonda, P. Keck, G. Taduri, W. Bechtel, H. Okada, W. Carlson Jr, P. Bey, M. Rusckowski, B. Tampe, D. Tampe, K. Kanasaki, M. Zeisberg, R. Kalluri, Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med. 18(3), 396–404 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, M. Shichiri, Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28(2), 103–117 (1995)

    Article  CAS  PubMed  Google Scholar 

  19. P.H. Wang, J. Lau, T.C. Chalmers, Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet 341(8856), 1306–1309 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of diabetes Interventions and Complications Research Group, Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287(19), 2563–2569 (2002)

    Article  Google Scholar 

  21. I. Ranjit Unnikrishnan, R.M. Anjana, V. Mohan, Importance of controlling diabetes early–the concept of metabolic memory, legacy effect and the case for early insulinisation. J. Assoc. Physicians India 59, 8–12 (2011)

    PubMed  Google Scholar 

  22. T.W. Tervaert, A.L. Mooyaart, K. Amann, A.H. Cohen, H.T. Cook, C.B. Drachenberg, F. Ferrario, A.B. Fogo, M. Haas, E. de Heer, K. Joh, L.H. Noël, J. Radhakrishnan, S.V. Seshan, I.M. Bajema, J.A. Bruijn, Renal Pathology Society, Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21(4), 556–563 (2010)

    Article  PubMed  Google Scholar 

  23. P.P. Rood, R. Bottino, A.N. Balamurugan, C. Smetanka, M. Ezzelarab, J. Busch, H. Hara, M. Trucco, D.K. Cooper, Induction of diabetes in cynomolgus monkeys with high-dose streptozotocin: adverse effects and early responses. Pancreas 33(3), 287–292 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. L.M. Russo, R.M. Sandoval, S.B. Campos, B.A. Molitoris, W.D. Comper, D. Brown, Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J. Am. Soc. Nephrol. 20(3), 489–494 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  25. S. He, Y. Chen, L. Wei, X. Jin, L. Zeng, Y. Ren, J. Zhang, L. Wang, H. Li, Y. Lu, J. Cheng, Treatment and risk factor analysis of hypoglycemia in diabetic rhesus monkeys. Exp. Biol. Med. (Maywood). 236(2), 212–218 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. S. Ferber, A. Halkin, H. Cohen, I. Ber, Y. Einav, I. Goldberg, I. Barshack, R. Seijffers, J. Kopolovic, N. Kaiser, A. Karasik, Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6(5), 568–572 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. B. Soria, E. Roche, G. Berná, T. León-Quinto, J.A. Reig, F. Martín, Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2), 157–162 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. J. Menne, N. Shushakova, J. Bartels, Y. Kiyan, R. Laudeley, H. Haller, J.K. Park, M. Meier, Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy. Diabetes 62(4), 1167–1174 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. N.F. Banki, A. Ver, L.J. Wagner, A. Vannay, P. Degrell, A. Prokai, R. Gellai, L. Lenart, D.N. Szakal, E. Kenesei, K. Rosta, G. Reusz, A.J. Szabo, T. Tulassay, C. Baylis, A. Fekete, Aldosterone antagonists in monotherapy are protective against streptozotocin-induced diabetic nephropathy in rats. PLoS ONE 7(6), e39938 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. H.Y. Lan, Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int. J. Biol. Sci. 7(7), 1056–1067 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. P. Boor, K. Sebeková, T. Ostendorf, J. Floege, Treatment targets in renal fibrosis. Nephrol. Dial. Transplant. 22(12), 3391–3407 (2007). Epub 2007 Sep 21

    Article  CAS  PubMed  Google Scholar 

  32. D.M. Maahs, G.L. Kinney, P. Wadwa, J.K. Snell-Bergeon, D. Dabelea, J. Hokanson, J. Ehrlich, S. Garg, R.H. Eckel, M.J. Rewers, Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care 28(2), 301–306 (2005)

    Article  PubMed  Google Scholar 

  33. Michael Shlipak, Associate Professor of Medicine. Diabetic nephropathy. Clin Evid (Online). 2009; 2009: 0606

  34. S. Andersen, L. Tarnow, P. Rossing, B.V. Hansen, H.H. Parving, Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. Kidney Int. 57(2), 601–606 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Program of Natural Science Foundation of China (No. 81370824) and National Program for High Technology Research and Development of China (No. 2012AA020702).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingqiu Cheng or Yanrong Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 17 kb)

12020_2014_211_MOESM2_ESM.doc

Supplementary Figure 1. Renal ultrasound blood flow distribution and spectrum in control and experimental groups(DOC 769 kb)

12020_2014_211_MOESM3_ESM.doc

Supplementary Figure 2. Retinal capillaries was normal in fundus examination. Left and right eyes of monkey from group C (DOC 766 kb)

12020_2014_211_MOESM4_ESM.doc

Supplementary Figure 3. Representative mages of H&E stained kidneys from control and 3 experimental groups before we imposed any interventions. Scale bar 100 μm (DOC 1815 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Liu, J., He, S. et al. Assessment of early renal damage in diabetic rhesus monkeys. Endocrine 47, 783–792 (2014). https://doi.org/10.1007/s12020-014-0211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0211-4

Keywords

Navigation