Skip to main content

Advertisement

Log in

Ischemic stroke functional outcomes are independently associated with C-reactive protein concentrations and cognitive outcomes with triiodothyronine concentrations: a pilot study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Elevated concentrations of C-reactive protein (CRP) and decreased concentrations of triiodothyronine (T3) were shown to predict poor outcomes in patients with stroke. However, the prognostic value of CRP and T3 has not been studied simultaneously in relation to stroke functional and cognitive outcomes despite of close interaction between inflammatory markers and thyroid function. We evaluated the association of thyroid hormone and CRP concentrations with immediate outcomes after ischemic stroke. Eighty-eight ischemic stroke patients on admission to the stroke unit were evaluated for clinical stroke severity (Scandinavian stroke scale or SSS) and concentrations of thyroid-stimulating hormone, free thyroxin, free T3, and CRP. Functional outcome (modified Rankin scale) and cognitive outcome (Mini mental state examination) were evaluated at discharge. Greater ln CRP concentrations (r = −0.35, p = 0.001), but not thyroid hormone concentrations, correlated with score on the SSS. In univariate analyses lower free T3 concentrations and higher CRP concentrations were associated with poor functional and poor cognitive outcomes. After adjustment for clinical stroke severity, higher CRP concentrations (β = 0.18, p = 0.04) remained associated with worse functional outcome and lower free T3 concentrations with worse cognitive outcome (β = 0.23, p = 0.03). In sum, clinical stroke severity is associated with elevated CRP concentration. Higher CRP concentration is independently associated with worse functional outcomes and lower free T3 concentration with worse cognitive outcomes at discharge. T3 and CRP can be important biomarkers in patients with acute ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, W.B. Borden, D.M. Bravata, S. Dai, E.S. Ford, C.S. Fox, S. Franco, H.J. Fullerton, C. Gillespie, S.M. Hailpern, J.A. Heit, V.J. Howard, M.D. Huffman, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, D. Magid, G.M. Marcus, A. Marelli, D.B. Matchar, D.K. McGuire, E.R. Mohler, C.S. Moy, M.E. Mussolino, G. Nichol, N.P. Paynter, P.J. Schreiner, P.D. Sorlie, J. Stein, T.N. Turan, S.S. Virani, N.D. Wong, D. Woo, M.B. Turner, Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013)

    Article  PubMed  Google Scholar 

  2. Prvu Bettger, J., Alexander, K.P., Dolor, R.J., Olson, D.M., Kendrick, A.S., Wing, L., Coeytaux, R.R., Graffagnino, C., Duncan, P.W.: Transitional care after hospitalization for acute stroke or myocardial infarction: a systematic review. Ann. Intern. Med. 157, 407–416 (2012)

    Article  Google Scholar 

  3. P.D. Lyden, L. Hantson, Assessment scales for the evaluation of stroke patients. J. Stroke. Cerebrovasc. Dis. 7, 113–127 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. A.K. Saenger, R.H. Christenson, Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin. Chem. 56, 21–33 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. M.H. Warner, G.J. Beckett, Mechanisms behind the non-thyroidal illness syndrome: an update. J. Endocrinol. 205, 1–13 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. M. Fontana, C. Passino, R. Poletti, L. Zyw, C. Prontera, M. Scarlattini, A. Clerico, M. Emdin, G. Iervasi, Low triiodothyronine and exercise capacity in heart failure. Int. J. Cardiol. 154, 153–157 (2012)

    Article  PubMed  Google Scholar 

  7. A. Bunevicius, V. Gintauskiene, A. Podlipskyte, R. Zaliunas, J. Brozaitiene, A.J. Prange Jr, R. Bunevicius, Fatigue in patients with coronary artery disease: association with thyroid axis hormones and cortisol. Psychosom. Med. 74(8), 848–853 (2012)

    Article  PubMed  Google Scholar 

  8. J. L. Leonard, J. Koehrle, in Intracellular pathways of iodothyronine metabolism, ed. by Werner, Ingbar, The thyroid: A fundamental and clinical text, 7th edn. (Lippincott-Raven Publishers, Philadelphia, 1996) pp. 136–173

  9. R. Bunevicius, A.J. Prange Jr, Thyroid disease and mental disorders: cause and effect or only comorbidity? Curr. Opin. Psychiatry. 23(4), 363–368 (2010)

    Article  PubMed  Google Scholar 

  10. A. Bunevicius, V. Deltuva, S. Tamasauskas, A. Tamasauskas, E.R. Laws Jr, R. Bunevicius, Low triiodothyronine syndrome as a predictor of poor outcomes in patients undergoing brain tumor surgery: a pilot study. J. Neurosurg. (2013). doi:10.3171/2013.1.JNS121696

  11. K. Plikat, J. Langgartner, R. Buettner, L.C. Bollheimer, U. Woenckhaus, J. Scholmerich, C.E. Wrede, Frequency and outcome of patients with nonthyroidal illness syndrome in a medical intensive care unit. Metabolism. 56, 239–244 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. S.D. Marks, C. Haines, I.M. Rebeyka, R.M. Couch, Hypothalamic–pituitary–thyroid axis changes in children after cardiac surgery. J. Clin. Endocrinol. Metab. 94(8), 2781–2786 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. M. Alevizaki, M. Synetou, K. Xynos, T. Pappa, K.N. Vemmos, Low triiodothyronine: a strong predictor of outcome in acute stroke patients. Eur. J. Clin. Investig. 37, 651–657 (2007)

    Article  CAS  Google Scholar 

  14. W. Ambrosius, R. Kazmierski, V. Gupta, A.W. Warot, D. Adamczewska-Kocialkowska, A. Blazejewska, K. Ziemnicka, W.L. Nowinski, Low free triiodothyronine levels are related to poor prognosis in acute ischemic stroke. Exp. Clin. Endocrinol. Diabetes 119, 139–143 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. S. Neidert, M. Katan, P. Schuetz, F. Fluri, A. Ernst, R. Bingisser, L. Kappos, S.T. Engelter, A. Steck, B. Muller, M. Christ-Crain, Anterior pituitary axis hormones and outcome in acute ischaemic stroke. J. Intern. Med. 269, 420–432 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. S. Melkas, N.K. Oksala, H. Jokinen, T. Pohjasvaara, R. Vataja, A. Oksala, M. Kaste, P.J. Karhunen, T. Erkinjuntti, Poststroke dementia predicts poor survival in long-term follow-up: influence of prestroke cognitive decline and previous stroke. J. Neurol. Neurosurg. Psychiatry 80(8), 865–870 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. M. Di Napoli, M. Schwaninger, R. Cappelli, E. Ceccarelli, G. Di Gianfilippo, C. Donati, H.C. Emsley, S. Forconi, S.J. Hopkins, L. Masotti, K.W. Muir, A. Paciucci, F. Papa, S. Roncacci, D. Sander, K. Sander, C.J. Smith, A. Stefanini, D. Weber, Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP Pooling Project members. Stroke 36, 1316–1329 (2005)

    Article  PubMed  Google Scholar 

  18. H.M. den Hertog, J.A. van Rossum, H.B. van der Worp, H.M. van Gemert, R. de Jonge, P.J. Koudstaal, D.W. Dippel, C-reactive protein in the very early phase of acute ischemic stroke: association with poor outcome and death. J. Neurol. 256, 2003–2008 (2009)

    Article  Google Scholar 

  19. J. Gunstad, L. Bausserman, R.H. Paul, D.F. Tate, K. Hoth, A. Poppas, A.L. Jefferson, R.A. Cohen, C-reactive protein, but not homocysteine, is related to cognitive dysfunction in older adults with cardiovascular disease. J. Clin. Neurosci. 13, 540–546 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. T. van der Poll, J.A. Romijn, W.M. Wiersinga, H.P. Sauerwein, Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J. Clin. Endocrinol. Metab. 71, 1567–1572 (1990)

    Article  PubMed  Google Scholar 

  21. H.A. Abo-Zenah, S.A. Shoeb, A.A. Sabry, H.A. Ismail, Relating circulating thyroid hormone concentrations to serum interleukins-6 and -10 in association with non-thyroidal illnesses including chronic renal insufficiency. BMC. Endocr. Disord. 8, 1 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  22. C. Jublanc, E. Bruckert, P. Giral, M.J. Chapman, L. Leenhardt, V. Carreau, G. Turpin, Relationship of circulating C-reactive protein levels to thyroid status and cardiovascular risk in hyperlipidemic euthyroid subjects: low free thyroxine is associated with elevated hsCRP. Atherosclerosis. 172, 7–11 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. E. Lindenstrom, G. Boysen, L.W. Christiansen, B.R. Hansen, P.W. Nielsen, Reliability of Scandinavian Neurological Stroke Scale. Cerebrovasc. Dis. 1, 103–107 (1991)

    Article  Google Scholar 

  24. R. Bonita, R. Beaglehole, Recovery of motor function after stroke. Stroke 19, 1497–1500 (1988)

    Article  CAS  PubMed  Google Scholar 

  25. H.P. Adams Jr, B.H. Bendixen, L.J. Kappelle, J. Biller, B.B. Love, D.L. Gordon, E.E. Marsh 3rd, Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24, 35–41 (1993)

    Article  PubMed  Google Scholar 

  26. J.L. Banks, C.A. Marotta, Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38(3), 1091–1096 (2007)

    Article  PubMed  Google Scholar 

  27. M.F. Folstein, S.E. Folstein, P.R. McHugh, “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975)

    Article  CAS  PubMed  Google Scholar 

  28. S. Meyer, P. Schuetz, M. Wieland, C. Nusbaumer, B. Mueller, M. Christ-Crain, Low triiodothyronine syndrome: a prognostic marker for outcome in sepsis? Endocrine 39(2), 167–174 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. D.F. Gardner, R.L. Carithers Jr, R.D. Utiger, Thyroid function tests in patients with acute and resolved hepatitis B virus infection. Ann. Intern. Med. 96, 450–452 (1982)

    Article  CAS  PubMed  Google Scholar 

  30. S. Bao, R. Oiknine, S.J. Fisher, Differentiating nonthyroidal illness syndrome from central hypothyroidism in the acutely ill hospitalized patient. Endocrine 42, 758–760 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. A. Boelen, J. Kwakkel, O. Chassande, E. Fliers, Thyroid hormone receptor beta mediates acute illness-induced alterations in central thyroid hormone metabolism. J. Neuroendocrinol. 21, 465–472 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. L. Sui, W.W. Ren, B.M. Li, Administration of thyroid hormone increases reelin and brain-derived neurotrophic factor expression in rat hippocampus in vivo. Brain Res. 1313, 9–24 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. L.H. Pitts, A. Ross, G.A. Chase, A.I. Faden, Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J. Neurotrauma 12, 235–243 (1995)

    Article  CAS  PubMed  Google Scholar 

  34. I. Margaill, J. Royer, D. Lerouet, M. Ramauge, C. Le Goascogne, W.W. Li, M. Plotkine, M. Pierre, F. Courtin, Induction of type 2 iodothyronine deiodinase in astrocytes after transient focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 25, 468–476 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. W.M. van der Deure, B.C. Appelhof, R.P. Peeters, W.M. Wiersinga, E.M. Wekking, J. Huyser, A.H. Schene, J.G. Tijssen, W.J. Hoogendijk, T.J. Visser, E. Fliers, Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin Endocrinol (Oxf). 69, 804–811 (2008)

    Article  PubMed  Google Scholar 

  36. C.E. Schwartz, R.E. Stevenson, The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome Best. Pract. Res. Clin. Endocrinol. Metab. 21, 307–321 (2007)

    Article  CAS  Google Scholar 

  37. R. Gill, J.A. Kemp, C. Sabin, M.B. Pepys, Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J. Cereb. Blood Flow Metab. 24, 1214–1218 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. P.M. Ridker, E. Danielson, F.A. Fonseca, J. Genest, A.M. Gotto Jr, J.J. Kastelein, W. Koenig, P. Libby, A.J. Lorenzatti, J.G. MacFadyen, B.G. Nordestgaard, J. Shepherd, J.T. Willerson, R.J. Glynn, Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Y. Huang, MD, PhD, from the Department of Neurology, University of North Carolina at Chapel Hill for his valuable comments regarding this article. This research was funded by the European Social Fund under the Global Grant measure (contract number: VP1-3.1-SMM-07-K-02-060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adomas Bunevicius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunevicius, A., Kazlauskas, H., Raskauskiene, N. et al. Ischemic stroke functional outcomes are independently associated with C-reactive protein concentrations and cognitive outcomes with triiodothyronine concentrations: a pilot study. Endocrine 45, 213–220 (2014). https://doi.org/10.1007/s12020-013-9958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9958-2

Keywords

Navigation