Skip to main content

Advertisement

Log in

Diagnostic performance of 99mTc-MIBI scan in predicting the malignancy of thyroid nodules: a meta-analysis

  • Meta-Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Several studies have investigated the diagnostic performance of 99mTc-MIBI scan in the evaluation of thyroid nodules suspicious for malignancy with conflicting results. The aim of our study is to meta-analyze published data on this topic. A comprehensive literature search of studies published through December 2012 regarding the diagnostic performance of 99mTc-MIBI scan in the evaluation of thyroid nodules suspicious for malignancy was carried out. Pooled sensitivity and specificity of 99mTc-MIBI scan on a per lesion-based analysis and the area under the ROC curve were calculated. Pathological reports of thyroid nodules were considered as reference standard. Twenty-one studies were included in the meta-analysis. Pooled sensitivity and specificity of 99mTc-MIBI scan in detecting malignant thyroid nodules were 85.1 % [95 % confidence interval (95 % CI): 81.1–88.5 %] and 45.7 % (95 % CI: 42.7–48.7 %), respectively, on a per lesion-based analysis, irrespective of eventual results of previous technetium pertechnetate (99mTcO4) or iodine-123 (123I) scan. The area under the ROC curve was 0.78. A sub-analysis restricted to data on hypofunctioning nodules on 99mTcO4 or 123I scans was performed: pooled sensitivity and specificity of 99mTc-MIBI scan in these nodules were 82.1 % (95 % CI: 77.2–86.3 %) and 62.8 % (95 % CI: 58.9–66.7 %), respectively, on a per lesion-based analysis. The area under the ROC curve was 0.81. 99mTc-MIBI scan is a sensitive diagnostic tool in predicting the malignancy of thyroid nodules. Therefore, this imaging method could be helpful in patients with thyroid nodules in which malignancy is suspected on the basis of conventional diagnostic techniques. Higher specificity can be reached when hypofunctioning thyroid nodules are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.J. Yeung, J.W. Serpell, Management of the solitary thyroid nodule. Oncologist 13, 105–112 (2008)

    Article  PubMed  Google Scholar 

  2. S. Guth, U. Theune, J. Aberle, A. Galach, C.M. Bamberger, Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Invest. 39, 699–706 (2009)

    Article  PubMed  CAS  Google Scholar 

  3. L. Pagano, M. Caputo, M.T. Samà, V. Garbaccio, M. Zavattaro, M.G. Mauri et al., Clinical-pathological changes in differentiated thyroid cancer (DTC) over time (1997–2010): data from the University Hospital “Maggiore della Carità” in Novara. Endocrine 42, 382–390 (2012)

    Article  PubMed  CAS  Google Scholar 

  4. F. Pacini, Changing natural history of differentiated thyroid cancer. Endocrine 42, 229–230 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. D.S. Tyler, A.R. Shaha, R.A. Udelsman, S.I. Sherman, N.W. Thompson, J.F. Moley et al., Thyroid cancer: 1999 update. Ann. Surg. Oncol. 7, 376–398 (2000)

    Article  PubMed  CAS  Google Scholar 

  6. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, D.S., Doherty, G.M., Haugen, B.R., Kloos, R.T., Lee, S.L., Mandel, S.J. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 19:1167–1214 (2009)

    Google Scholar 

  7. C. Caldarella, G. Treglia, A. Pontecorvi, A. Giordano, Diagnostic performance of planar scintigraphy using 99mTc-MIBI in patients with secondary hyperparathyroidism: a meta-analysis. Ann. Nucl. Med. 26, 794–803 (2012)

    Article  PubMed  Google Scholar 

  8. P.F. Whiting, M.E. Weswood, A.W. Rutjes, J.B. Reitsma, P.N. Bossuyt, J. Kleijnen, Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med. Res. Methodol. 6, 9 (2006)

    Article  PubMed  Google Scholar 

  9. J. Zamora, V. Abraira, A. Muriel, K. Khan, A. Coomarasamy, Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med. Res. Methodol. 6, 31 (2006)

    Article  PubMed  Google Scholar 

  10. G. Leidig-Bruckner, G. Cichorowski, P. Sattler, T. Bruckner, B. Sattler, Evaluation of thyroid nodules–combined use of (99m)Tc-methylisobutylnitrile scintigraphy and aspiration cytology to assess risk of malignancy and stratify patients for surgical or nonsurgical therapy: a retrospective cohort study. Clin. Endocrinol. 76, 749–758 (2012)

    Article  CAS  Google Scholar 

  11. E.O. Onkendi, M.L. Richards, G.B. Thompson, D.R. Farley, P.J. Peller, C.S. Grant, Thyroid cancer detection with dual-isotope parathyroid scintigraphy in primary hyperparathyroidism. Ann. Surg. Oncol. 19, 1446–1452 (2012)

    Article  PubMed  Google Scholar 

  12. J.L. Beristain Hernández, E. Servín Torres, A. Sosa Caballero, J.A. Velázquez García, R. Pozzo Bobarín, G. Delgadillo Teyer et al., Determination of the diagnostic accuracy of 99mTc sestamibi scanning in patients with thyroid nodule and a definitive histopathological report. Endocrinol. Nutr. 57, 460–466 (2010)

    Article  PubMed  Google Scholar 

  13. P. Theissen, M. Schmidt, T. Ivanova, M. Dietlein, H. Schicha, MIBI scintigraphy in hypofunctioning thyroid nodules—can it predict the dignity of the lesion? Nuklearmedizin 48, 144–152 (2009)

    PubMed  CAS  Google Scholar 

  14. L. Giovanella, S. Suriano, M. Maffioli, L. Ceriani, G. Spriano, (99m)Tc-sestamibi scanning in thyroid nodules with nondiagnostic cytology. Head Neck 32, 607–611 (2010)

    PubMed  Google Scholar 

  15. E. Saggiorato, T. Angusti, R. Rosas, M. Martinese, M. Finessi, F. Arecco et al., 99mTc-MIBI imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J. Nucl. Med. 50, 1785–1793 (2009)

    Article  PubMed  Google Scholar 

  16. L.M. Hurtado-López, S. Arellano-Montaño, E.M. Torres-Acosta, F.R. Zaldivar-Ramirez, R.M. Duarte-Torres, P. Alonso-De-Ruiz et al., Combined use of fine-needle aspiration biopsy, MIBI scans and frozen section biopsy offers the best diagnostic accuracy in the assessment of the hypofunctioning solitary thyroid nodule. Eur. J. Nucl. Med. Mol. Imaging. 31, 1273–1279 (2004)

    Article  PubMed  Google Scholar 

  17. R. Sharma, A. Mondal, L.R. Shankar, M. Sahoo, P. Bhatnagar, K. Sawroop et al., Differentiation of malignant and benign solitary thyroid nodules using 30- and 120-minute TC-99m MIBI scans. Clin. Nucl. Med. 29, 534–537 (2004)

    Article  PubMed  Google Scholar 

  18. F. Boi, M.L. Lai, C. Deias, M. Piga, A. Serra, A. Uccheddu et al., The usefulness of 99mTc-SestaMIBI scan in the diagnostic evaluation of thyroid nodules with oncocytic cytology. Eur. J. Endocrinol. 149, 493–498 (2003)

    Article  PubMed  CAS  Google Scholar 

  19. K. Demirel, O. Kapucu, C. Yücel, H. Ozdemir, G. Ayvaz, F. Taneri, A comparison of radionuclide thyroid angiography, (99m)Tc-MIBI scintigraphy and power Doppler ultrasonography in the differential diagnosis of solitary cold thyroid nodules. Eur. J. Nucl. Med. Mol. Imaging. 30, 642–650 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. M.M. Sathekge, R.B. Mageza, M.N. Muthuphei, M.C. Modiba, R.C. Clauss, Evaluation of thyroid nodules with technetium-99m MIBI and technetium-99m pertechnetate. Head Neck 23, 305–310 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. T.Y. Erdil, K. Ozker, L. Kabasakal, B. Kanmaz, K. Sönmezoglu, K.C. Atasoy et al., Correlation of technetium-99m MIBI and thallium-201 retention in solitary cold thyroid nodules with postoperative histopathology. Eur. J. Nucl. Med. 27, 713–720 (2000)

    Article  PubMed  CAS  Google Scholar 

  22. E. Mezosi, L. Bajnok, F. Gyory, J. Varga, I. Sztojka, J. Szabo et al., The role of technetium-99m methoxyisobutylisonitrile scintigraphy in the differential diagnosis of cold thyroid nodules. Eur. J. Nucl. Med. 26, 798–803 (1999)

    Article  PubMed  CAS  Google Scholar 

  23. E. Kresnik, H.J. Gallowitsch, P. Mikosch, I. Gomez, P. Lind, Technetium-99m-MIBI scintigraphy of thyroid nodules in an endemic goiter area. J. Nucl. Med. 38, 62–65 (1997)

    PubMed  CAS  Google Scholar 

  24. O. Alonso, G. Lago, F. Mut, J.C. Hermida, M. Nunez, G. De Palma et al., Thyroid imaging with Tc-99m MIBI in patients with solitary cold single nodules on pertechnetate imaging. Clin. Nucl. Med. 21, 363–363 (1996)

    Article  PubMed  CAS  Google Scholar 

  25. M. Klain, S. Maurea, A. Cuocolo, A. Colao, L. Marzano, G. Lombardi et al., Technetium-99m tetrofosmin imaging in thyroid diseases: comparison with Tc-99m-pertechnetate, thallium-201 and Tc-99m-methoxyisobutylisonitrile scans. Eur. J. Nucl. Med. 23, 1568–1574 (1996)

    Article  PubMed  CAS  Google Scholar 

  26. H. Nakahara, S. Noguchi, N. Murakami, H. Hoshi, S. Jinnouchi, S. Nagamachi et al., Technetium-99m-sestamibi scintigraphy compared with thallium-201 in evaluation of thyroid tumors. J. Nucl. Med. 37, 901–904 (1996)

    PubMed  CAS  Google Scholar 

  27. J.P. Wei, G.J. Burke, Characterization of the neoplastic potential of solitary solid thyroid lesions with Tc-99m-pertechnetate and Tc-99m-sestamibi scanning. Ann. Surg. Oncol. 2, 233–237 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. F.X. Sundram, P. Mack, Evaluation of thyroid nodules for malignancy using 99Tcm-sestamibi. Nucl. Med. Commun. 16, 687–693 (1995)

    Article  PubMed  CAS  Google Scholar 

  29. I. Földes, A. Lévay, G. Stotz, Comparative scanning of thyroid nodules with technetium-99m pertechnetate and technetium-99m methoxyisobutylisonitrile. Eur. J. Nucl. Med. 20, 330–333 (1993)

    Article  PubMed  Google Scholar 

  30. Z. Szybiński, B. Huszno, F. Gołkowski, A. Atneisha, Technetium 99m-methoxyisobutylisonitrile in early diagnosis of thyroid cancer. Endokrynol. Pol. 44, 427–433 (1993)

    PubMed  Google Scholar 

  31. R.S. Bahn, M.R. Castro, Approach to the patient with nontoxic multinodular Goiter. J. Clin. Endocrinol. Metab. 96, 1202–1212 (2011)

    Article  PubMed  CAS  Google Scholar 

  32. P.D. Radecki, P.H. Arger, R.L. Arenson, A.S. Jennings, B.G. Coleman, M.C. Mintz et al., Thyroid imaging: comparison of high-resolution real-time ultrasound and computed tomography. Radiology 153, 145–147 (1984)

    PubMed  CAS  Google Scholar 

  33. G.H. Tan, H. Gharib, Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann. Intern. Med. 126, 226–231 (1997)

    Article  PubMed  CAS  Google Scholar 

  34. S.A. Fish, J.E. Langer, S.J. Mandel, Sonographic imaging of thyroid nodules and cervical lymph nodes. Endocrinol. Metab. Clin. North Am. 37, 401–417 (2008)

    Article  PubMed  Google Scholar 

  35. T. Rago, P. Vitti, L. Chiovato, S. Mazzeo, A. De Liperi, P. Miccoli et al., Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in ‘cold’ thyroid nodules. Eur. J. Endocrinol. 138, 41–46 (1998)

    Article  PubMed  CAS  Google Scholar 

  36. F. Lumachi, L. Varotto, S. Borsato, A. Tregnaghi, P. Zucchetta, M.C. Marzola et al., Usefulness of 99mTc-pertechnetate scintigraphy and fine-needle aspiration cytology in patients with solitary thyroid nodules and thyroid cancer. Anticancer Res. 24, 2531–2534 (2004)

    PubMed  Google Scholar 

  37. G. Treglia, B. Muoio, L. Giovanella, M. Salvatori, The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview. Eur. Arch. Otorhinolaryngol. 115(2), 237–243 (2012). doi:10.1007/s00405-012-2205-2

    Google Scholar 

  38. F. Bertagna, G. Treglia, A. Piccardo, E. Giovannini, G. Bosio, G. Biasiotto et al., F18-FDG-PET/CT thyroid incidentalomas: a wide retrospective analysis in three Italian centres on the significance of focal uptake and SUV value. Endocrine (2012). doi:10.1007/s12020-012-9837-2

    PubMed  Google Scholar 

  39. G. Treglia, M.F. Villani, A. Giordano, V. Rufini, Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis. Endocrine 42, 535–545 (2012)

    Article  PubMed  CAS  Google Scholar 

  40. D. Vriens, J.H. de Wilt, G.J. van der Wilt, R.T. Netea-Maier, W.J. Oyen, L.F. de Geus-Oei, The role of [18F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography in thyroid nodules with indeterminate fine-needle aspiration biopsy: systematic review and meta-analysis of the literature. Cancer 117, 4582–4594 (2011)

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Treglia.

Additional information

Giorgio Treglia and Carmelo Caldarella equally contributed to this article sharing the first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treglia, G., Caldarella, C., Saggiorato, E. et al. Diagnostic performance of 99mTc-MIBI scan in predicting the malignancy of thyroid nodules: a meta-analysis. Endocrine 44, 70–78 (2013). https://doi.org/10.1007/s12020-013-9932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9932-z

Keywords

Navigation