Skip to main content
Log in

Features of left ventricular hypertrophy in patients with metabolic syndrome with or without comparable blood pressure: a meta-analysis

  • Meta-Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The prevalence of metabolic syndrome (MS) has been on the rise over the past few decades, and this is associated with an increased incidence of target organ damage such as left ventricular hypertrophy (LVH). This meta-analysis aims to evaluate the features of LVH in MS patients with or without high blood pressure (BP). PubMed, Cochrane Library, Embase, Science Citation Index, and China Biology Medicine Disc, WanFang data, China National Knowledge Infrastructure database, and VIP were searched. Cross-sectional studies which directly compared LVH in hypertensive patients with MS and those with hypertension alone were identified. The following parameters were analyzed: systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular mass (LVM), left ventricular mass index (LVMI), left ventricular mass/height2.7 (LVM/h2.7), interventricular septum thickness (IVSt), left ventricular end-diastolic diameter (LVEDd), left ventricular posterior wall (LVPW), ratio of early to late diastolic peak flow velocity (E/A), and relative wall thickness (RWT). Data were extracted and analyzed by Cochrane Collaboration’s RevMan 5.0 software. 14 studies involving 5,994 patients were included. In four studies, MS patients with comparable level of BP had higher SBP (mmHg) [Mean Difference (MD) = 2.28, 95 % confidence intervals (CI): −0.58 to 5.13], DBP (mmHg) (MD = 1.32, 95 % CI: −0.23 to 2.87), LVM (g) (MD = 42.10, 95 % CI: 6.92–77.28), LVMI (g/m2) (MD = 8.93, 95 % CI: 5.29–12.57), LVM/h2.7 (g/m2.7) (MD = 5.40, 95 % CI: 2.51–8.29), IVSt (mm) (MD = 0.49, 95 % CI: 0.28–0.71), LVEDd (mm) (MD = 1.04, 95 % CI: −1.10 to 3.18), LVPW (mm) (MD = 0.75, 95 % CI: 0.13–1.37), RWT (MD = 0.06, 95 % CI: −0.00 to 0.12), and lower E/A (MD = −0.08, 95 % CI: −0.18 to 0.02) when compared to the patients with hypertension alone. In other ten studies, the hypertensive patients with MS exhibited higher levels of SBP (mmHg) (MD = 4.67, 95 % CI: 2.72–6.62), DBP (mmHg) (MD = 2.03,95 % CI: 1.40–2.65), LVM (g) (MD = 24.79, 95 % CI: 20.21–29.36), LVMI(g/m2) (MD = 9.22, 95 % CI: 2.81–15.64), LVM/h2.7 (g/m2.7) (MD = 5.97, 95 % CI: 4.14–7.80), IVSt (mm) (MD = 0.63, 95 % CI: 0.58–0.69), LVEDd (mm) (MD = 1.11, 95 % CI: 0.42–1.80), LVPW (mm) (MD = 0.63, 95 % CI: 0.31–0.94), RWT (MD = 0.02, 95 % CI: 0.01–0.03), as compared to patients with hypertension alone (P < 0.05). In addition, the MS patients combining with hypertension showed a lower E/A (MD = −0.07, 95 % CI: −0.10 to −0.04) when compared to those with hypertension alone. This study suggests that MS plays an important role in the development of LVH. MS seems to amplify hypertension-related cardiac changes. Furthermore, MS combining with higher level of BP will aggravate LVH and damage the diastolic function of left ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G.M. Reaven, Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition. 13, 65; discussion 64, 66 (1997)

    Google Scholar 

  2. S.M. Haffner, L. Ruilope, B. Dahlof, E. Abadie, S. Kupfer, F. Zannad, Metabolic syndrome, new onset diabetes, and new end points in cardiovascular trials. J. Cardiovasc. Pharmacol. 47, 469–475 (2006)

    PubMed  CAS  Google Scholar 

  3. H. Takeuchi, S. Saitoh, S. Takagi, H. Ohnishi, J. Ohhata, T. Isobe, K. Shimamoto, Metabolic syndrome and cardiac disease in Japanese men: applicability of the concept of metabolic syndrome defined by the National Cholesterol Education Program-Adult Treatment Panel III to Japanese men–the Tanno and Sobetsu Study. Hypertens. Res. 28, 203–208 (2005)

    Article  PubMed  Google Scholar 

  4. K. Yasushi, Definition and criteria of metabolic syndrome. Jpn. J. Clin. Exp. Med. 84, 99–103 (2007)

    Google Scholar 

  5. P. Zimmet, K.G.M.M. Alberti, J. Shaw, The IDF consensus worldwide definition of the metabolic syndrome. 28, 1059–1062 (2005)

  6. S.M. Grundy, J.I. Cleeman, S.R. Daniels, K.A. Donato, R.H. Eckel, B.A. Franklin, D.J. Gordon, R.M. Krauss, P.J. Savage, S.C. Smith Jr, J.A. Spertus, C. Fernando, Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive Summary. Crit. Pathw. Cardiol. 4, 198–203 (2005)

    Article  PubMed  Google Scholar 

  7. G. Reaven, The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol. Metab. Clin. N. Am. 33, 283–303 (2004)

    Article  Google Scholar 

  8. B. Balkau, M. Vernay, L. Mhamdi, M. Novak, D. Arondel, S. Vol, J. Tichet, E. Eschwege, The incidence and persistence of the NCEP (National Cholesterol Education Program) metabolic syndrome. The French D.E.S.I.R. study. Diabetes Metab. 29, 526–532 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. E.S. Ford, W.H. Giles, A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care 26, 575–581 (2003)

    Article  PubMed  Google Scholar 

  10. B.H. Lorell, B.A. Carabello, Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102, 470–479 (2000)

    Article  PubMed  CAS  Google Scholar 

  11. G.Y. Lip, M.D. Gammage, D.G. Beevers, Hypertension and the heart. Br. Med. Bull. 50, 299–321 (1994)

    PubMed  CAS  Google Scholar 

  12. J.P. Higgins, S. Green (eds.), Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.1. The Cochrane Collaboration (2008). http://www.cochrane-handbook.org

  13. G.M. Reaven, Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988)

    Article  PubMed  CAS  Google Scholar 

  14. B. Zoccai, P. Agostoni, A. Abbate, L. Testa, F. Burzotta, A simple hint to improve Robinson and Dickersin’s highly sensitive PubMed search strategy for controlled clinical trials. Int. J. Epidemiol. 34, 224–225 (2005)

    Article  Google Scholar 

  15. E. Expert Panel on Detection, and Treatment of High Blood Cholesterol in Adults, Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001)

  16. European Society of Hypertension-European Society of Cardiology Guidelines Committee, 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J. Hypertens. 21, 1011–1053 (2003)

    Google Scholar 

  17. G. de Simone, R.B. Devereux, S.R. Daniels, M.J. Koren, R.A. Meyer, J.H. Laragh, Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J. Am. Coll. Cardiol. 25, 1056–1062 (1995)

    Article  PubMed  Google Scholar 

  18. J. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002)

    Article  PubMed  Google Scholar 

  19. P.D. Tamma, N. Putcha, Y.D. Suh, K.J. Van Arendonk, M.L. Rinke, Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect. Dis. 11, 181 (2011)

    Google Scholar 

  20. D.F. Stroup, J.A. Berlin, S.C. Morton, I. Olkin, G.D. Williamson, D. Rennie, D. Moher, B.J. Becker, T.A. Sipe, S.B. Thacker, Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 283, 2008–2012 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. A.M. Grandi, A.M. Maresca, E. Giudici, E. Laurita, C. Marchesi, F. Solbiati, E. Nicolini, L. Guasti, A. Venco, Metabolic syndrome and morphofunctional characteristics of the left ventricle in clinically hypertensive nondiabetic subjects. Am. J. Hypertens. 19, 199–205 (2006)

    Article  PubMed  Google Scholar 

  22. C. Cuspidi, S. Meani, V. Fusi, B. Severgnini, C. Valerio, E. Catini, G. Leonetti, F. Magrini, A. Zanchetti, Metabolic syndrome and target organ damage in untreated essential hypertensives. J. Hypertens. 22, 1991–1998 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. C. Cuspidi, S. Meani, C. Valerio, C. Sala, V. Fusi, A. Zanchetti, G. Mancia, Age and target organ damage in essential hypertension: role of the metabolic syndrome. Am. J. Hypertens. 20, 296–303 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. C. Tsioufis, D. Tsiachris, K. Dimitriadis, G. Chartzoulakis, M. Selima, D. Chatzis, E. Taxiarchou, C. Stefanadis, I. Kallikazaros, Evidence for no global effect of metabolic syndrome per se on early hypertensive sequelae. J. Hypertens. 26, 773–779 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. F. Guerra, L. Mancinelli, L. Angelini, M. Fortunati, A. Rappelli, P. Dessı`-Fulgheri, Riccardo Sarzani, The association of left ventricular hypertrophy with metabolic syndrome is dependent on body mass index in hypertensive overweight or obese patients. PLoS ONE 6, e166301–e166306 (2011)

    Google Scholar 

  26. G. Leoncini, E. Ratto, F. Viazzi, V. Vaccaro, D. Parodi, A. Parodi, V. Falqui, C. Tomolillo, G. Deferrari, R. Pontremoli, Metabolic syndrome is associated with early signs of organ damage in nondiabetic, hypertensive patients. J. Intern. Med. 257, 454–460 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. G. Mule, E. Nardi, P. Cusimano, S. Cottone, G. Seddio, C. Geraci, A. Palermo, G. Andronico, G. Cerasola, Plasma aldosterone and its relationships with left ventricular mass in essential hypertensive patients with the metabolic syndrome. Am. J. Hypertens. 21, 1055–1061 (2008)

    Article  PubMed  CAS  Google Scholar 

  28. G. Mule, E. Nardi, S. Cottone, P. Cusimano, V. Volpe, G. Piazza, R. Mongiovi, G. Mezzatesta, G. Andronico, G. Cerasola, Influence of metabolic syndrome on hypertension-related target organ damage. J. Intern. Med. 257, 503–513 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. S. Sciarretta, A. Ferrucci, G.M. Ciavarella, P. De Paolis, V. Venturelli, G. Tocci, L. De Biase, S. Rubattu, M. Volpe, Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. Am. J. Hypertens. 20, 784–791 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. J. Tao, X.X. Ren, The influence of metabolic syndrome on left ventricular morphology in elderly hypertensive patients. Chin. Med. Fact. Mine. 21, 554–555 (2008)

    Google Scholar 

  31. Z.Q. Tan, The relation between left ventricular hypertrophy and Insulin resistance in hypertensive patients with or without metabolic syndrome. J. Guangxi Med. Univ. 23, 562–563 (2006)

    CAS  Google Scholar 

  32. Y. Liu, Influence of Metabolic Syndrome on the Left Ventricular Hypertrophy in Non-diabetic Hypertensive Patients (Dalian Medical University, Dalian, 2006)

  33. Q.L. Wang, F. Lu, L. Yang, X.X. Liang, Echocardiographic in evaluating influence of metabolic syndrome on the left Ventricular hypertrophy and the left ventricular cardiac function in hypertensive patient. Proc. Clin. Med. J. 18, 96–99 (2009)

    CAS  Google Scholar 

  34. Q.L. Wang, Anatomical M-code Echocardiography Combined with Strain Rate Imaging Technology to Explore the Metabolic Syndrome in Patients with Left Ventricular Structure and Function Changes (Shanxi Medical University, Taiyuan, 2009)

  35. F. Cacciapuoti, Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)—possible therapeutic perspectives. J. Am. Soc. Hypertens. 5, 449–455 (2011)

    Article  PubMed  CAS  Google Scholar 

  36. M.J. Roman, P.M. Okin, J.R. Kizer, E.T. Lee, B.V. Howard, R.B. Devereux, Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J. Hypertens. 28, 384–388 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. M.J. Bloch, J.N. Basile, A lower blood pressure goal in patients without diabetes lessens the occurrence of left ventricular hypertrophy. J. Clin. Hypertens. 12, 109–111 (2010)

    Article  Google Scholar 

  38. S. Jithendra, W. Gillian, P. Katrina, B. Mariska, W. Gina, P. Ann, B. Warwick, D. Rob, Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community. Cardiovasc. Diabetol. 10, 29 (2011)

    Article  Google Scholar 

  39. S. Santra, A.K. Basu, P. Roychowdhury, R. Banerjee, P. Singhania, S. Singh, U.K. Datta, Comparison of left ventricular mass in normotensive type 2 diabetes mellitus patients with that in the nondiabetic population. J. Cardiovasc. Dis. Res. 2, 50–56 (2011)

    Article  PubMed  Google Scholar 

  40. A. Sciacqua, S. Miceli, G. Carullo, L. Greco, E. Succurro, F. Arturi, G. Sesti, F. Perticone, One-hour postload plasma glucose levels and left ventricular mass in hypertensive patients. Diabetes Care 34, 1406–1411 (2011)

    Article  PubMed  CAS  Google Scholar 

  41. A. Ilercil, R.B. Devereux, M.J. Roman, M. Paranicas, M.J. O’Grady, E.T. Lee, T.K. Welty, R.R. Fabsitz, B.V. Howard, Associations of insulin levels with left ventricular structure and function in American Indians the strong heart study. Diabetes 51, 1543–1547 (2002)

    Article  PubMed  CAS  Google Scholar 

  42. B. Ivanović, D. Cvijanović, M. Tadić, D. Simić, Myocardial hypertrophy in hypertensive patients with and without metabolic syndrome. Vojnosanit. Pregl. 65, 830–834 (2008)

    Article  PubMed  Google Scholar 

  43. M.R. Movahed, S. Bates, D. Strootman, S. Sattur, Obesity in adolescence is associated with left ventricular hypertrophy and hypertension. Echocardiography. 28, 150–153 (2011)

    Article  PubMed  Google Scholar 

  44. B. Falkner, S. DeLoach, S.W. Keith, S.S. Gidding, High risk blood pressure and obesity increase the risk for left ventricular hypertrophy in African-American adolescents. J. Pediatr. 162, 94–100 (2013)

    Article  PubMed  Google Scholar 

  45. G. Mancia, M. Bombelli, R. Facchetti, F. Madotto, G. Corrao, F.Q. Trevano, C. Giannattasio, G. Grassi, R. Sega, Long-term risk of diabetes, hypertension and left ventricular hypertrophy associated with the metabolic syndrome in a general population. J. Hypertens. 26, 1602–1611 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the key Project of Traditional Chinese Medicine in Gansu Province of China (Code: GZK-2001-Z1); the Science and Technology Support Project in Gansu Province of China (Code: 0709TCYA068), and the Research Grant of the Second Hospital of Lanzhou University (Code: 2010-yj02).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yu.

Appendices

Appendix 1: Search strategy to identify studies on the association of MS and LVH in hypertensive patients

Embase, Cochrane library, and Science Citation Index

MeSH terms

  1. 1.

    “Metabolic syndrome X”

  2. 2.

    “Hypertension”

  3. 3.

    “Hypertrophy, left ventricular”

  4. 4.

    “Cross-sectional studies”

Text terms

  1. 5.

    “Metabolic syndrome”

  2. 6.

    “MS”

  3. 7.

    “Hypertension”

  4. 8.

    “Hypertensive”

  5. 9.

    “Left ventricular hypertrophy”

  6. 10.

    “LVH”

  7. 11.

    “Observational studies” OR “cross-sectional studies”

Search strings (all inclusive):

  1. 12.

    1 OR 5 OR 6

  2. 13.

    2 OR 7 OR 8

  3. 14.

    3 OR 9 OR 10

  4. 15.

    4 OR 11

  5. 16.

    12 AND 13 AND 14 AND 15

China Biology Medicine Disc, WanFang data, China National Knowledge Infrastructure database, and VIP

Text terms

  1. 1.

    “Metabolic syndrome”

  2. 2.

    “Hypertension”

  3. 3.

    “Left ventricular hypertrophy”

  4. 4.

    “Observational studies” OR “cross-sectional studies”

Search strings (all inclusive):

  1. 5.

    1 AND 2 AND 3 AND 4

Appendix 2: Search strategy for Pubmed developed according to Biondi-Zoccaiet et al.

Metabolic syndrome AND hypertension AND left ventricular hypertrophy AND (randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized controlled trials[mh] OR random allocation[mh] OR double blind method[mh] OR single-blind method[mh] OR clinical trial[pt] OR clinical trials[mh] OR (clinical trial[tw] OR ((singl*[tw] OR doubl*[tw] OR trebl*[tw] OR tripl*[tw]) AND (mask*[tw] OR blind[tw])) OR (latin square[tw]) OR placebos[mh] OR placebo*[tw] OR random*[tw] OR research design[mh:noexp] OR comparative study[tw] OR evaluation studies[mh] OR follow-up studies[mh] OR prospective studies[mh] OR cross-over studies[mh] OR control*[tw] OR prospectiv*[tw] OR volunteer*[tw]) NOT (animal[mh] NOT human[mh]) NOT (comment[pt] OR editorial[pt] OR meta-analysis[pt] OR practice-guideline[pt] OR review[pt]).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ny., Yu, J., Zhang, Xw. et al. Features of left ventricular hypertrophy in patients with metabolic syndrome with or without comparable blood pressure: a meta-analysis. Endocrine 43, 548–563 (2013). https://doi.org/10.1007/s12020-013-9883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9883-4

Keywords

Navigation