Skip to main content
Log in

Dietary composition of carbohydrates contributes to the development of experimental type 2 diabetes

  • Research Letter
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Evidence has emerged supporting a link between high glycaemic index (GI) diets and type 2 diabetes (T2D). The aim of this study was to determine if dietary GI influences the development of hyperglycaemia in C57BL/6 mice to more closely reflect T2D. Male C57BL/6 mice (n=30) were randomly divided into 3 dietary groups consisting of either standard rodent chow (4.8 % fat, 20 % protein), or a high fat (HF) diet (21–23 % fat, 19 % protein) with low GI (15.4 % starch; HF-LG) or high GI (50.5 % dextrose; HF-HG) ad libitum for 10 weeks. Body weight, blood glucose, glucose tolerance, and circulating cholesterol and triglyceride levels were measured for the duration of the study. We found that increasing the GI of a moderately HF diet induces severe hyperglycaemia and insulin resistance in C57BL/6 mice, reflective of criteria for diagnosis of T2D, whilst littermates consuming an equivalent low GI diet maintain glucose homeostasis. This study demonstrates the significant contribution of both dietary carbohydrate and fat composition in the aetiopathogenesis of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

T2D:

Type 2 diabetes

HF:

High fat

GI:

Glycaemic index

SAT:

Subcutaneous adipose tissue

VAT:

Visceral adipose tissue

References

  1. D.R. Whiting, L. Guariguata, C. Weil, J. Shaw, IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321 (2011)

    Article  PubMed  Google Scholar 

  2. M. Bergman, Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine (2012). doi:10.1007/s12020-012-9830-9

  3. E.H. Leiter, Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol 560: 1–17 (2009)

    Google Scholar 

  4. P. Lindstrom, The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7: 666–685 (2007)

  5. K.A. Hodgson, J.L. Morris, M.L. Feterl, B.L. Govan, N. Ketheesan, Altered macrophage function is associated with severe Burkholderia pseudomallei infection in a murine model of type 2 diabetes. Microbes Infect. 13, 1177–1184 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. R.S. Surwit, C.M. Kuhn, C. Cochrane, J.A. McCubbin, M.N. Feinglos, Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167 (1988)

    Article  PubMed  CAS  Google Scholar 

  7. D.S. Ludwig, J.A. Majzoub, A. Al-Zahrani, G.E. Dallal, I. Blanco, S.B. Roberts, High glycemic index foods, overeating, and obesity. Pediatrics 103, E26 (1999)

    Article  PubMed  CAS  Google Scholar 

  8. S. Kooptiwut, S. Zraika, A.W. Thorburn et al., Comparison of insulin secretory function in two mouse models with different susceptibility to beta-cell failure. Endocrinology 143, 2085–2092 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. E.R. Gilbert, Z. Fu, D. Liu, Development of a nongenetic mouse model of type 2 diabetes. Exp Diabetes Res 2011, 416254 (2011)

    Article  PubMed  Google Scholar 

  10. W. Willett, J. Manson, S. Liu, Glycemic index, glycemic load, and risk of type 2 diabetes. Am. J. Clin. Nutr. 76, 274S–280S (2002)

    PubMed  CAS  Google Scholar 

  11. D.B. Pawlak, J.A. Kushner, D.S. Ludwig, Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet 364, 778–785 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. B. Aigner, B. Rathkolb, N. Herbach, M.Hrabe. de Angelis, R. Wanke, E. Wolf, Diabetes models by screen for hyperglycemia in phenotype-driven ENU mouse mutagenesis projects. Am. J. Physiol. Endocrinol. Metab. 294, E232–E240 (2008)

    Article  PubMed  CAS  Google Scholar 

  13. U. Andersson, L. Rosen, N. Wierup, E. Ostman, I. Bjorck, C. Holm, A low glycaemic diet improves oral glucose tolerance but has no effect on beta-cell function in C57BL/6J mice. Diabetes Obes. Metab. 12, 976–982 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. R.E. Stubbins, K. Najjar, V.B. Holcomb, J. Hong, N.P. Nunez, Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes. Metab. 14, 58–66 (2012)

    Article  PubMed  CAS  Google Scholar 

  15. K.J. Acheson, Carbohydrate and weight control: where do we stand? Curr. Opin. Clin. Nutr. Metab. Care 7, 485–492 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. F.F. Samaha, N. Iqbal, P. Seshadri et al., A low-carbohydrate as compared with a low-fat diet in severe obesity. N. Engl. J. Med. 348, 2074–2081 (2003)

    Article  PubMed  CAS  Google Scholar 

  17. L. Velázquez-López, E. González-Figueroa, P. Medina-Bravo et al., Low calorie and carbohydrate diet: to improve the cardiovascular risk indicators in overweight or obese adults with prediabetes. Endocrine (2012). doi:10.1007/s12020-012-9775-z

Download references

Acknowledgments

This study was supported by a Competitive Research Initiative Grant from James Cook University, Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments were conducted in accordance with national guidelines and were approved by the institutional ethics committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hodgson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgson, K., Govan, B., Ketheesan, N. et al. Dietary composition of carbohydrates contributes to the development of experimental type 2 diabetes. Endocrine 43, 447–451 (2013). https://doi.org/10.1007/s12020-013-9874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9874-5

Keywords

Navigation