Skip to main content

Advertisement

Log in

Molecular basis of pharmacological therapy in Cushing’s disease

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Cushing’s disease (CD) is a severe endocrine condition caused by an adrenocorticotropin (ACTH)-producing pituitary adenoma that chronically stimulates adrenocortical cortisol production and with potentially serious complications if not or inadequately treated. Active CD may produce a fourfold increase in mortality and is associated with significant morbidities. Moreover, excess mortality risk may persist even after CD treatment. Although predictors of risk in treated CD are not fully understood, the importance of early recognition and adequate treatment is well established. Surgery with resection of a pituitary adenoma is still the first line therapy, being successful in about 60–70 % of patients; however, recurrence within 2–4 years may often occur. When surgery fails, medical treatment can reduce cortisol production and ameliorate clinical manifestations while more definitive therapy becomes effective. Compounds that target hypothalamic–pituitary axis, glucocorticoid synthesis or adrenocortical function are currently used to control the deleterious effects of chronic glucocorticoid excess. In this review we describe and analyze the molecular basis of the drugs targeting the disease at central level, suppressing ACTH secretion, as well as at peripheral level, acting as adrenal inhibitors, or glucocorticoid receptor antagonists. Understanding of the underlying molecular mechanisms in CD and of glucocorticoid biology should promote the development of new targeted and more successful therapies in the future. Indeed, most of the drugs discussed have been tested in limited clinical trials, but there is potential therapeutic benefit in compounds with better specificity for the class of receptors expressed by ACTH-secreting tumors. However, long-term follow-up with management of persistent comorbidities is needed even after successful treatment of CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Pivonello, M.C. De Martino, M. De Leo, G. Lombardi, A. Colao, Cushing’s syndrome. Endocrinol. Metab. Clin. N. Am. 37, 135–149 (2008)

    CAS  Google Scholar 

  2. B.M. Biller, A.B. Grossman, P.M. Stewart, S. Melmed, X. Bertagna, J. Bertherat, M. Buchfelder, A. Colao, A.R. Hermus, L.J. Hofland, A. Klibanski, A. Lacroix, J.R. Lindsay, J. Newell-Price, L.K. Nieman, S. Petersenn, N. Sonino, G.K. Stalla, B. Swearingen, M.L. Vance, J.A. Wass, M. Boscaro, Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J. Clin. Endocrinol. Metab. 93, 2454–2462 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  3. J.S. Lim, S.K. Lee, S.H. Kim, E.J. Lee, S.H. Kim, Intraoperative multiple-staged resection and tumor tissue identification using frozen sections provide the best result for the accurate localization and complete resection of tumors in Cushing’s disease. Endocrine 40, 452–461 (2011)

    CAS  PubMed  Google Scholar 

  4. A.E. Calogero, Neurotransmitter regulation of the hypothalamic corticotropin-releasing hormone neuron. Ann. N. Y. Acad. Sci. 771, 31–40 (1995)

    CAS  PubMed  Google Scholar 

  5. R. Giordano, M. Pellegrino, A. Picu, L. Bonelli, M. Balbo, R. Berardelli, F. Lanfranco, E. Ghigo, E. Arvat, Neuroregulation of the hypothalamus–pituitary–adrenal (HPA) axis in humans: effects of GABA-, mineralocorticoid-, and GH-secretagogue-receptor modulation. Sci. World J. 6, 1–11 (2006)

    CAS  Google Scholar 

  6. R.W. Fuller, The involvement of serotonin in regulation of pituitary–adrenocortical function. Front. Neuroendocrinol. 13, 250–270 (1992)

    CAS  PubMed  Google Scholar 

  7. B. Ambrosi, M. Gaggini, F. Secchi, G. Faglia, Lack of effect of antiserotoninergic and/or dopaminergic treatment in patients with pituitary-dependent Cushing’s syndrome. Horm. Metab. Res. 11, 318–319 (1979)

    CAS  PubMed  Google Scholar 

  8. F. Cavagnini, U. Raggi, P. Micossi, A. Di Landro, C. Invitti, Effect of an antiserotoninergic drug, metergoline, on the ACTH and cortisol response to insulin hypoglycemia and lysine-vasopressin in man. J. Clin. Endocrinol. Metab. 43, 306–312 (1976)

    CAS  PubMed  Google Scholar 

  9. N. Sonino, G.A. Fava, F. Fallo, A. Franceschetto, P. Belluardo, M. Boscaro, Effect of the serotonin antagonists ritanserin and ketanserin in Cushing’s disease. Pituitary 3, 55–59 (2000)

    CAS  PubMed  Google Scholar 

  10. R. Tanakol, F. Alagöl, H. Azizlerli, O. Sandalci, T. Terzioğlu, F. Berker, Cyproheptadine treatment in Cushing’s disease. J. Endocrinol. Invest. 19, 242–247 (1996)

    CAS  PubMed  Google Scholar 

  11. K.I. Alexandraki, A.B. Grossman, Pituitary-targeted medical therapy of Cushing’s disease. Expert Opin. Investig. Drugs 17, 669–677 (2008)

    CAS  PubMed  Google Scholar 

  12. T. Suda, F. Tozawa, T. Mouri, A. Sasaki, T. Shibasaki, H. Demura, K. Shizume, Effects of cyproheptadine, reserpine, and synthetic corticotropin-releasing factor on pituitary glands from patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 56, 1094–1099 (1983)

    CAS  PubMed  Google Scholar 

  13. D.T. Krieger, L. Amorosa, F. Linick, Cyproheptadine-induced remission of Cushing’s disease. N. Engl. J. Med. 293, 893–896 (1975)

    CAS  PubMed  Google Scholar 

  14. N.G. Bowery, D.R. Hill, A.L. Hudson, G.W. Price, W.J. Turnbull, G.P. Wilson, Heterogeneity of mammalian GABA receptors, in Actions and interactions of GABA and benzodiazepine, ed. by N.G. Bowery (Raven Press, New York, 1984), pp. 81–108

    Google Scholar 

  15. J. Takahara, S. Yumoki, W. Yakushji, J. Yamauchi, H. Hosogi, T. Ofuji, Stimulatory effects of gamma-aminohydroxybutyric acid (GABOB) on growth hormone, prolactin and cortisol release in man. Horm. Metab. Res. 12, 31–34 (1980)

    CAS  PubMed  Google Scholar 

  16. P.M. Plotsky, S. Otto, S. Sutton, Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sci. 41, 1311–1317 (1987)

    CAS  PubMed  Google Scholar 

  17. H.P. Koppeschaar, R.J. Croughs, J.H. Thijssen, F. Schwarz, Sodium valproate and cyproheptadine may independently induce a remission in the same patient with Cushing’s disease. Acta Endocrinol. (Copenh). 104, 160–163 (1983)

    CAS  PubMed  Google Scholar 

  18. A. Beckers, A. Stevenaert, G. Pirens, P. Flandroy, J. Sulon, G. Hennen, Cyclical Cushing’s disease and its successful control under sodium valproate. J. Endocrinol. Invest. 13, 923–929 (1990)

    CAS  PubMed  Google Scholar 

  19. A. Colao, R. Pivonello, F.S. Tripodi, F. Orio Jr, D. Ferone, G. Cerbone, C. Di Somma, B. Merola, G. Lombardi, Failure of long-term therapy with sodium valproate in Cushing’s disease. J. Endocrinol. Invest. 20, 387–392 (1997)

    CAS  PubMed  Google Scholar 

  20. S.S. Nussey, P. Price, J.S. Jenkins, A.R. Altaher, B. Gillham, M.T. Jones, The combined use of sodium valproate and metyrapone in the treatment of Cushing’s syndrome. Clin. Endocrinol. (Oxf). 28, 373–380 (1988)

    CAS  PubMed  Google Scholar 

  21. M. Mannelli, G. Cantini, G. Poli, M. Mangoni, G. Nesi, L. Canu, E. Rapizzi, E. Borgogni, T. Ercolino, V. Piccini, M. Luconi, Role of the PPAR-γ system in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 92(Suppl 1), 23–27 (2010)

    CAS  PubMed  Google Scholar 

  22. A.P. Heaney, M. Fernando, W.H. Yong, S. Melmed, Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat. Med. 8, 1281–1287 (2002)

    CAS  PubMed  Google Scholar 

  23. K. Winczyk, J. Kunert-Radek, A. Gruszka, M. Radek, H. Ławnicka, M. Pawlikowski, Effects of rosiglitazone-peroxisome proliferators-activated receptor gamma (PPARgamma) agonist on cell viability of human pituitary adenomas in vitro. Neuro. Endocrinol. Lett. 30, 107–110 (2009)

    CAS  PubMed  Google Scholar 

  24. L. Kreutzer, I. Jeske, B. Hofmann, I. Blumcke, R. Fahlbusch, M. Buchfelder, R. Buslei, No effect of the PPAR-gamma agonist rosiglitazone on ACTH or cortisol secretion in Nelson’s syndrome and Cushing’s disease in vitro and in vivo. Clin. Neuropathol. 28, 430–439 (2009)

    CAS  PubMed  Google Scholar 

  25. M. Manning, A. Misicka, A. Olma, K. Bankowski, S. Stoev, B. Chini, T. Durroux, B. Mouillac, M. Corbani, G. Guillon, Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J. Neuroendocrinol. 24, 609–628 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  26. G. Narayen, S.N. Mandal, Vasopressin receptor antagonists and their role in clinical medicine. Indian J. Endocrinol. Metab. 16, 183–191 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  27. D.E. Schteingart, Drugs in the medical treatment of Cushing’s syndrome. Expert Opin. Emerg. Drugs 14, 661–671 (2009)

    CAS  PubMed  Google Scholar 

  28. M. Páez-Pereda, D. Kovalovsky, U. Hopfner, M. Theodoropoulou, U. Pagotto, E. Uhl, M. Losa, J. Stalla, Y. Grübler, C. Missale, E. Arzt, G.K. Stalla, Retinoic acid prevents experimental Cushing syndrome. J. Clin. Invest. 108, 1123–1131 (2001)

    PubMed Central  PubMed  Google Scholar 

  29. D. Giacomini, M. Páez-Pereda, M. Theodoropoulou, M. Labeur, D. Refojo, J. Gerez, A. Chervin, S. Berner, M. Losa, M. Buchfelder, U. Renner, G.K. Stalla, E. Arzt, Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology 147, 247–256 (2006)

    CAS  PubMed  Google Scholar 

  30. V. Castillo, D. Giacomini, M. Páez-Pereda, J. Stalla, M. Labeur, M. Theodoropoulou, F. Holsboer, A.B. Grossman, G.K. Stalla, E. Arzt, Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology 147, 4438–4444 (2006)

    CAS  PubMed  Google Scholar 

  31. F. Pecori Giraldi, A.G. Ambrogio, M. Andrioli, F. Sanguin, I. Karamouzis, S.M. Corsello, C. Scaroni, E. Arvat, A. Pontecorvi, F. Cavagnini, Potential role for retinoic acid in patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 97, 3577–3583 (2012)

    PubMed  Google Scholar 

  32. R.M. Luque, M.D. Gahete, U. Hochgeschwender, R.D. Kineman, Evidence that endogenous SST inhibits ACTH and ghrelin expression by independent pathways. Am. J. Physiol. Endocrinol. Metab. 291, E395–E403 (2006)

    CAS  PubMed  Google Scholar 

  33. D. Cervia, D. Fehlmann, D. Hoyer, Native somatostatin sst2 and sst5 receptors functionally coupled to Gi/o-protein, but not to the serum response element in AtT-20 mouse tumour corticotrophs. Naunyn Schmiedebergs Arch. Pharmacol. 367, 387–578 (2003)

    Google Scholar 

  34. M.Z. Strowski, M.P. Dashkevicz, R.M. Parmar, H. Wilkinson, M. Kohler, J.M. Schaeffer, A.D. Blake, Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinology 75, 339–346 (2002)

    CAS  PubMed  Google Scholar 

  35. S. Nielsen, S. Mellemkjaer, L.M. Rasmussen, T. Ledet, N. Olsen, M. Bojsen-Møller, J. Astrup, J. Weeke, J.O. Jørgensen, Expression of somatostatin receptors on human pituitary adenomas in vivo and ex vivo. J. Endocrinol. Invest. 24, 430–437 (2001)

    CAS  PubMed  Google Scholar 

  36. U.I. Richardson, A. Schonbrunn, Inhibition of adrenocorticotropin secretion by somatostatin in pituitary cells in culture. Endocrinology 108, 281–290 (1981)

    CAS  PubMed  Google Scholar 

  37. A. Ben-Shlomo, K.A. Wawrowsky, I. Proekt, N.M. Wolkenfeld, S.R. Ren, J. Taylor, M.D. Culler, S. Melmed, Somatostatin receptor type 5 modulates somatostatin receptor type 2 regulation of adrenocorticotropin secretion. J. Biol. Chem. 280, 24011–24021 (2005)

    CAS  PubMed  Google Scholar 

  38. J. van der Hoek, M. Waaijers, P.M. van Koetsveld, D. Sprij-Mooij, R.A. Feelders, H.A. Schmid, P. Schoeffter, D. Hoyer, D. Cervia, J.E. Taylor, M.D. Culler, S.W. Lamberts, L.J. Hofland, Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am. J. Physiol. Endocrinol. Metab. 289, E278–E287 (2005)

    PubMed  Google Scholar 

  39. L.J. Hofland, J. van der Hoek, R. Feelders, M.O. van Aken, P.M. van Koetsveld, M. Waaijers, D. Sprij-Mooij, C. Bruns, G. Weckbecker, W.W. de Herder, A. Beckers, S.W. Lamberts, The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur. J. Endocrinol. 152, 645–654 (2005)

    CAS  PubMed  Google Scholar 

  40. M.C. Zatelli, D. Piccin, C. Vignali, F. Tagliati, M.R. Ambrosio, M. Bondanelli, V. Cimino, A. Bianchi, H.A. Schmid, M. Scanarini, A. Pontecorvi, L. De Marinis, G. Maira, E.C. degli Uberti, Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 14, 91–102 (2007)

    CAS  PubMed  Google Scholar 

  41. A.P. Silva, P. Schoeffter, G. Weckbecker, C. Bruns, H.A. Schmid, Regulation of CRH-induced secretion of ACTH and corticosterone by SOM230 in rats. Eur. J. Endocrinol. 153, R7–R10 (2005)

    CAS  PubMed  Google Scholar 

  42. L.A. Nolan, H.A. Schmid, A. Levy, Octreotide and the novel multi-receptor ligand somatostatin receptor agonist pasireotide (SOM230), block the adrenalectomy-induced increase in mitotic activity in male rat anterior pituitary. Endocrinology 148, 2821–2827 (2007)

    CAS  PubMed  Google Scholar 

  43. J. van der Hoek, S.W. Lamberts, L.J. Hofland, The role of somatostatin analogs in Cushing’s disease. Pituitary 7, 257–264 (2004)

    PubMed  Google Scholar 

  44. L.J. Hofland, S.W.J. Lamberts, R.A. Feelders, Role of somatostatin receptors in normal and tumoral pituitary corticotropic cells. Neuroendocrinology 92(suppl 1), 11–16 (2010)

    CAS  PubMed  Google Scholar 

  45. M.R. Ambrosio, M. Campo, M.C. Zatelli, S.G. Cella, G. Trasforini, A. Margutti, A.E. Rigamonti, E.E. Müller, E.C. degli Uberti, Unexpected activation of pituitary-adrenal axis in healthy young and elderly subjects during somatostatin infusion. Neuroendocrinology 68, 123–128 (1998)

    CAS  PubMed  Google Scholar 

  46. C. Invitti, F. Pecori Giraldi, A. Dubini, M. Piolini, F. Cavagnini, Effect of Sandostatin on CRF-stimulated secretion of ACTH, beta-lipotropin and beta-endorphin. Horm. Metab. Res. 23, 233–235 (1991)

    CAS  PubMed  Google Scholar 

  47. P.J. Stafford, P.J. Kopelman, K. Davidson, L. McLoughlin, A. White, L.H. Rees, G.M. Besser, D.H. Coy, A. Grossman, The pituitary-adrenal response to CRF-41 is unaltered by intravenous somatostatin in normal subjects. Clin. Endocrinol. (Oxf). 30, 661–666 (1989)

    CAS  PubMed  Google Scholar 

  48. H.L. Fehm, K.H. Voigt, R. Lang, K.E. Beinert, S. Raptis, E.F. Pfeiffer, Somatostatin: a potent inhibitor of ACTH-hypersecretion in adrenal insufficiency. Klin Wochenschr. 54, 173–175 (1976)

    CAS  PubMed  Google Scholar 

  49. G. Benker, K. Hackenberg, B. Hamburger, D. Reinwein, Effects of growth hormone release-inhibiting hormone and bromocryptine (CB 154) in states of abnormal pituitary-adrenal function. Clin. Endocrinol. (Oxf). 5, 187–190 (1976)

    CAS  PubMed  Google Scholar 

  50. G.K. Stalla, S.J. Brockmeier, U. Renner, C. Newton, M. Buchfelder, J. Stalla, O.A. Müller, Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur. J. Endocrinol. 130, 125–131 (1994)

    CAS  PubMed  Google Scholar 

  51. B. Ambrosi, D. Bochicchio, C. Fadin, P. Colombo, G. Faglia, Failure of somatostatin and octreotide to acutely affect the hypothalamic–pituitary–adrenal function in patients with corticotropin hypersecretion. J. Endocrinol. Invest. 13, 257–261 (1990)

    CAS  PubMed  Google Scholar 

  52. S.W. Lamberts, J. Zuyderwijk, F. den Holder, P. van Koetsveld, L. Hofland, Studies on the conditions determining the inhibitory effect of somatostatin on adrenocorticotropin, prolactin and thyrotropin release by cultured rat pituitary cells. Neuroendocrinology 50, 44–50 (1989)

    CAS  PubMed  Google Scholar 

  53. J. Julesz, F. Laczi, T. Janáky, F. László, Effects of somatostatin and bromocryptine on the plasma ACTH level in bilaterally adrenalectomized patients with Cushing’s disease. Endokrinologie 76, 68–72 (1980)

    CAS  PubMed  Google Scholar 

  54. C. de Bruin, R.A. Feelders, A.M. Waaijers, P.M. van Koetsveld, D.M. Sprij-Mooij, S.W.J. Lamberts, L.J. Hofland, Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J. Mol. Endocrinol. 42, 47–56 (2009)

    PubMed  Google Scholar 

  55. A. Saveanu, P. Jaquet, Somatostatin-dopamine ligands in the treatment of pituitary adenomas. Rev. Endocr. Metab. Disord. 10, 83–90 (2009)

    CAS  PubMed  Google Scholar 

  56. C. de Bruin, A.M. Pereira, R.A. Feelders, J.A. Romijn, F. Roelfsema, D.M. Sprij-Mooij, M.O. van Aken, A.J. van der Lelij, W.W. de Herder, S.W. Lamberts, L.J. Hofland, Coexpression of dopamine and somatostatin receptor subtypes in corticotroph adenomas. J. Clin. Endocrinol. Metab. 94, 1118–1124 (2009)

    PubMed  Google Scholar 

  57. T. Tateno, M. Kato, Y. Tani, K. Oyama, S. Yamada, Y. Hirata, Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas. Endocr. J. 56, 579–584 (2009)

    CAS  PubMed  Google Scholar 

  58. D.L. Batista, X. Zhang, R. Gejman, P.J. Ansell, Y. Zhou, S.A. Johnson, B. Swearingen, E.T. Hedley-Whyte, C.A. Stratakis, A. Klibanski, The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J. Clin. Endocrinol. Metab. 91, 4482–4488 (2006)

    CAS  PubMed  Google Scholar 

  59. E. Hubina, A.M. Nanzer, M.R. Hanson, E. Ciccarelli, M. Losa, D. Gaia, M. Papotti, M.R. Terreni, S. Khalaf, S. Jordan, S. Czirják, Z. Hanzély, G.M. Nagy, M.I. Góth, A.B. Grossman, M. Korbonits, Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumours. Eur. J. Endocrinol. 155, 371–379 (2006)

    CAS  PubMed  Google Scholar 

  60. A. Ben-Shlomo, H. Schmid, K. Wawrowsky, O. Pichurin, E. Hubina, V. Chesnokova, N.A. Liu, M. Culler, S. Melmed, Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J. Clin. Endocrinol. Metab. 94, 4342–4350 (2006)

    Google Scholar 

  61. S. Lesche, D. Lehmann, F. Nagel, H.A. Schmid, S. Schulz, Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J. Clin. Endocrinol. Metab. 94, 654–661 (2009)

    CAS  PubMed  Google Scholar 

  62. M.C. Zatelli, F. Tagliati, J.E. Taylor, D. Piccin, M.D. Culler, E.C. degli Uberti, Somatostatin, but not somatostatin receptor subtypes 2 and 5 selective agonists, inhibits calcitonin secretion and gene expression in the human medullary thyroid carcinoma cell line, TT. Horm. Metab. Res. 34, 229–233 (2002)

    CAS  PubMed  Google Scholar 

  63. A. Colao, S. Petersenn, J. Newell-Price, J.W. Findling, F. Gu, M. Maldonado, U. Schoenherr, D. Mills, L.R. Salgado, B.M. Biller, Pasireotide B2305 Study Group, A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 366, 914–924 (2012)

    CAS  PubMed  Google Scholar 

  64. R.A. Feelders, C. de Bruin, A.M. Pereira, J.A. Romijn, R.T. Netea-Maier, A.R. Hermus, P.M. Zelissen, F.H. de Jong, A.J. van der Lely, W.W. de Herder, L.J. Hofland, S.W.J. Lamberts, Stepwise medical treatment of Cushing’s disease with pasireotide mono- or combination therapy with cabergoline and low-dose ketoconazole. N. Engl. J. Med. 362, 1846–1848 (2010)

    CAS  PubMed  Google Scholar 

  65. R. Pivonello, D. Ferone, G. Lombardi, A. Colao, S.W. Lamberts, L.J. Hofland, Novel insights in dopamine receptor physiology. Eur. J. Endocrinol. 156(Suppl 1), S13–S21 (2007)

    CAS  PubMed  Google Scholar 

  66. M. Boschetti, F. Gatto, M. Arvigo, D. Esposito, A. Rebora, M. Talco, M. Albertelli, E. Nazzari, U. Goglia, F. Minuto, D. Ferone, Role of dopamine receptors in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 92(Suppl 1), 17–22 (2010)

    CAS  PubMed  Google Scholar 

  67. A. Saiardi, E. Borrelli, Absence of dopaminergic control on melanotrophs leads to Cushing’s-like syndrome in mice. Mol. Endocrinol. 12, 1133–1139 (1998)

    CAS  PubMed  Google Scholar 

  68. D. Ferone, R. Pivonello, E. Resmini, M. Boschetti, A. Rebora, M. Albertelli, V. Albanese, A. Colao, M.D. Culler, F. Minuto, Preclinical and clinical experiences with the role of dopamine receptors in the treatment of pituitary adenomas. Eur. J. Endocrinol. 156(Suppl 1), S37–S43 (2007)

    CAS  PubMed  Google Scholar 

  69. D. Ferone, F. Gatto, M. Arvigo, E. Resmini, M. Boschetti, C. Teti, D. Esposito, F. Minuto, The clinical-molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J. Mol. Endocrinol. 42, 361–370 (2009)

    CAS  PubMed  Google Scholar 

  70. W.E. Farrell, A.J. Clark, M.F. Stewart, S.R. Crosby, A. White, Bromocriptine inhibits pro-opiomelanocortin mRNA and ACTH precursor secretion in small cell lung cancer cell lines. J Clin Invest. 90, 705–710 (1992)

    CAS  PubMed Central  PubMed  Google Scholar 

  71. D. Yin, S. Kondo, J. Takeuchi, T. Morimura, Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett. 339, 73–75 (1994)

    CAS  PubMed  Google Scholar 

  72. R. Pivonello, D. Ferone, W.W. de Herder, J.M. Kros, M.L. De Caro, M. Arvigo, L. Annunziato, G. Lombardi, A. Colao, L.J. Hofland, S.W. Lamberts, Dopamine receptor expression and function in corticotroph pituitary tumors. J. Clin. Endocrinol. Metab. 89, 2452–2462 (2004)

    CAS  PubMed  Google Scholar 

  73. M. Rocheville, D.C. Lange, U. Kumar, S.C. Patel, R.C. Patel, Y.C. Patel, Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000)

    CAS  PubMed  Google Scholar 

  74. D. Ferone, A. Saveanu, M.D. Culler, M. Arvigo, A. Rebora, F. Gatto, F. Minuto, P. Jaquet, Novel chimeric somatostatin analogs: facts and perspectives. Eur. J. Endocrinol. 156(Suppl 1), S23–S28 (2007)

    CAS  PubMed  Google Scholar 

  75. A. Saveanu, G. Gunz, S. Guillen, H. Dufour, M.D. Culler, P. Jaquet, Somatostatin and dopamine-somatostatin multiple ligands directed towards somatostatin and dopamine receptors in pituitary adenomas. Neuroendocrinology 83, 258–263 (2006)

    CAS  PubMed  Google Scholar 

  76. D. Ferone, M. Arvigo, C. Semino, P. Jaquet, A. Saveanu, J.E. Taylor, J.P. Moreau, M.D. Culler, M. Albertelli, F. Minuto, A. Barreca, Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation. Am. J. Physiol. Endocrinol. Metab. 289, E1044–E1050 (2005)

    CAS  PubMed  Google Scholar 

  77. C. De Bruin, R.A. Feelders, S.W. Lamberts, L.J. Hofland, Somatostatin and dopamine receptors as targets for medical treatment of Cushing’s syndrome. Rev. Endocr. Metab. Disord. 10, 91–102 (2009)

    CAS  PubMed  Google Scholar 

  78. M. Barbot, N. Albiger, F. Ceccato, M. Zilio, A.C. Frigo, L. Denaro, F. Mantero, C. Scaroni, Combination therapy for Cushing’s disease: effectiveness of two schedules of treatment. Should we start with cabergoline or ketoconazole? Pituitary (2013). doi:10.1007/s11102-013-0475-3

  79. E.S. Newlands, G.R.P. Blackledge, J.A. Slack, G.J.S. Rustin, D.B. Smith, N.S.A. Stuart, C.P. Quarterman, R. Hoffman, M.F.G. Stevens, M.H. Brampton, A.C. Gibson, Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br. J. Cancer 65, 287–291 (1992)

    CAS  PubMed Central  PubMed  Google Scholar 

  80. S. Neidle, D.E. Thurston, Chemical approaches to the discovery and development of cancer therapies. Nat. Rev. Cancer 5, 285–296 (2005)

    CAS  PubMed  Google Scholar 

  81. S. Lim, H. Shahinian, M.M. Maya, W. Yong, A.P. Heaney, Temozolomide: a novel treatment for pituitary carcinoma. Lancet Oncol. 7, 518–520 (2006)

    PubMed  Google Scholar 

  82. F.J. Rodriguez, S.N. Thibodeau, R.B. Jenkins, K.V. Schowalter, B.L. Caron, B.P. O’neill, C.D. James, S. Passe, J. Slezak, C. Giannini, MGMT immunohistochemical expression and promoter methylation in human glioblastoma. Appl. Immunohistochem. Mol. Morphol. 16, 59–65 (2008)

    CAS  PubMed  Google Scholar 

  83. S. Sharma, F. Salehi, B.W. Scheithauer, F. Rotondo, L.V. Syro, K. Kovacs, Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Res. 29, 3759–3768 (2009)

    CAS  PubMed  Google Scholar 

  84. L.V. Syro, L.D. Ortiz, B.W. Scheithauer, R. Lloyd, Q. Lau, R. Gonzalez, H. Uribe, M. Cusimano, K. Kovacs, E. Horvath, Treatment of pituitary neoplasms with temozolomide: a review. Cancer 117, 454–462 (2011)

    CAS  PubMed  Google Scholar 

  85. A. Takeshita, N. Inoshita, M. Taguchi, C. Okuda, N. Fukuhara, K. Oyama, K. Ohashi, T. Sano, Y. Takeuchi, S. Yamada, High incidence of low O(6)-methylguanine DNA methyltransferase expression in invasive macroadenomas of Cushing’s disease. Eur. J. Endocrinol. 161, 553–559 (2009)

    CAS  PubMed  Google Scholar 

  86. F. Salehi, B.W. Scheithauer, K. Kovacs, E. Horvath, L.V. Syro, S. Sharma, B. Manoranjan, M. Cusimano, O-6-methylguanine-DNA methyltransferase (MGMT) immunohistochemical expression in pituitary corticotroph adenomas. Neurosurgery 70, 491–496 (2012)

    PubMed  Google Scholar 

  87. G. Raverot, F. Castinetti, E. Jouanneau, I. Morange, D. Figarella-Branger, H. Dufour, J. Trouillas, T. Brue, Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin. Endocrinol. 76, 769–775 (2012)

    CAS  Google Scholar 

  88. K. Kovacs, B.W. Scheithauer, M. Lombardero, R.E. McLendon, L.V. Syro, H. Uribe, L.D. Ortiz, L.C. Penagos, MGMT immunoexpression predicts responsiveness of pituitary tumors to temozolomide therapy. Acta Neuropathol. 115, 261–262 (2008)

    PubMed  Google Scholar 

  89. S.S. Agarwala, J.M. Kirkwood, Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 5, 144–151 (2000)

    CAS  PubMed  Google Scholar 

  90. J. Sheehan, J. Rainey, J. Nguyen, R. Grimsdale, S. Han, Temozolomide-induced inhibition of pituitary adenoma cells. J. Neurosurg. 114, 354–358 (2011)

    CAS  PubMed  Google Scholar 

  91. A. Spada, Growth factors and human pituitary adenomas. Eur. J. Endocrinol. 138, 255–257 (1998)

    CAS  PubMed  Google Scholar 

  92. M. Niveiro, F.I. Aranda, G. Peiró, C. Alenda, A. Picó, Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum. Pathol. 36, 1090–1095 (2005)

    CAS  PubMed  Google Scholar 

  93. C.J. McCabe, K. Boelaert, L.A. Tannahill, A.P. Heaney, A.L. Stratford, J.S. Khaira, S. Hussain, M.C. Sheppard, J.A. Franklyn, N.J. Gittoes, Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J. Clin. Endocrinol. Metab. 87, 4238–4244 (2002)

    CAS  PubMed  Google Scholar 

  94. L.D. Ortiz, L.V. Syro, B.W. Scheithauer, A. Ersen, H. Uribe, C.E. Fadul, F. Rotondo, E. Horvath, K. Kovacs, Anti-VEGF therapy in pituitary carcinoma. Pituitary 15, 445–449 (2012)

    PubMed  Google Scholar 

  95. S. Ezzat, L. Zheng, H.S. Smyth, S.L. Asa, The c-erbB-2/neu proto-oncogene in human pituitary tumours. Clin. Endocrinol. (Oxf). 46, 599–606 (1997)

    CAS  PubMed  Google Scholar 

  96. G. Kontogeorgos, L. Stefaneanu, K. Kovacs, Z. Cheng, Localization of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFr) in human pituitary adenomas and nontumorous pituitaries: an immunocytochemical study. Endocr. Pathol. 7, 63–70 (1996)

    CAS  PubMed  Google Scholar 

  97. O. Cooper, G. Vlotides, H. Fukuoka, M.I. Greene, S. Melmed, Expression and function of ErbB receptors and ligands in the pituitary. Endocr. Relat. Cancer 18, R197–R211 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  98. D. Lubke, W. Saeger, D.K. Ludecke, Proliferation markers and EGF in ACTH-secreting adenomas and carcinomas of the pituitary. Endocr. Pathol. 6, 45–55 (1995)

    PubMed  Google Scholar 

  99. P.A. van Wijk, J.W. van Neck, A. Rijnberk, R.J. Croughs, J.A. Mol, Proliferation of the murine corticotropic tumour cell line AtT20 is affected by hypophysiotrophic hormones, growth factors and glucocorticoids. Mol. Cell. Endocrinol. 111, 13–19 (1995)

    PubMed  Google Scholar 

  100. H. Fukuoka, O. Cooper, A. Ben-Shlomo, A. Mamelak, S.G. Ren, D. Bruyette, S. Melmed, EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Invest. 121, 4712–4721 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  101. A. Gorshtein, H. Rubinfeld, E. Kendler, M. Theodoropoulou, V. Cerovac, G.K. Stalla, Z.R. Cohen, M. Hadani, I. Shimon, Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GHsecreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 16, 1017–1027 (2009)

    CAS  PubMed  Google Scholar 

  102. M.C. Zatelli, M. Minoia, C. Filieri, F. Tagliati, M. Buratto, M.R. Ambrosio, M. Lapparelli, M. Scanarini, E.C. degli Uberti, Effect of everolimus on cell viability in nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 95, 968–976 (2010)

    CAS  PubMed  Google Scholar 

  103. D. Dworakowska, E. Wlodek, C.A. Leontiou, S. Igreja, M. Cakir, M. Teng, N. Prodromou, M.I. Goth, S. Grozinsky-Glasberg, M. Gueorguiev, B. Kola, M. Korbonits, A.B. Grossman, Activation of RAF/MEK/ERK and PI3 K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr. Relat. Cancer 16, 1329–1338 (2009)

    CAS  PubMed  Google Scholar 

  104. E. Jouanneau, A. Wierinckx, F. Ducray, V. Favrel, F. Borson-Chazot, J. Honnorat, J. Trouillas, G. Raverot, New targeted therapies in pituitary carcinoma resistant to temozolomide. Pituitary 15, 37–43 (2012)

    CAS  PubMed  Google Scholar 

  105. V. Cerovac, J. Monteserin-Garcia, H. Rubinfeld, M. Buchfelder, M. Losa, T. Florio, M. Paez-Pereda, G.K. Stalla, M. Theodoropoulou, The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res. 70, 666–674 (2010)

    CAS  PubMed  Google Scholar 

  106. K.E. O’Reilly, F. Rojo, Q.B. She, D. Solit, G.B. Mills, D. Smith, H. Lane, F. Hofmann, D.J. Hicklin, D.L. Ludwig, J. Baselga, N. Rosen, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006)

    PubMed Central  PubMed  Google Scholar 

  107. P.M. Stewart, S. Petersenn, Rationale for treatment and therapeutic options in Cushing’s disease. Best Pract. Res. Clin. Endocrinol. Metab. 23(Suppl 1), S15–S22 (2009)

    PubMed  Google Scholar 

  108. M. Boscaro, N. Sonino, A. Rampazzo, F. Mantero, Response of pituitary-adrenal axis to corticotrophin releasing hormone in patients with Cushing’s disease before and after ketoconazole treatment. Clin. Endocrinol. (Oxf). 27, 461–467 (1987)

    CAS  PubMed  Google Scholar 

  109. P. Loli, M.E. Berselli, M. Tagliaferri, Use of ketoconazole in the treatment of Cushing’s syndrome. J. Clin. Endocrinol. Metab. 63, 1365–1371 (1986)

    CAS  PubMed  Google Scholar 

  110. N. Sonino, The use of ketoconazole as an inhibitor of steroid production. N. Engl. J. Med. 317, 812–818 (1987)

    CAS  PubMed  Google Scholar 

  111. R.A. Feelders, L.J. Hofland, W.W. de Herder, Medical treatment of Cushing’s syndrome: adrenal-blocking drugs and ketaconazole. Neuroendocrinology 92(Suppl 1), 111–115 (2010)

    CAS  PubMed  Google Scholar 

  112. G.K. Stalla, J. Stalla, M. Huber, J.P. Loeffler, V. Hollt, K. von Werder, O.A. Muller, Ketoconazole inhibits corticotropic cell function in vitro. Endocrinology 122, 618–623 (1988)

    CAS  PubMed  Google Scholar 

  113. A. Angeli, R. Frairia, Ketoconazole therapy in Cushing’s disease. Lancet 1, 821 (1985)

    CAS  PubMed  Google Scholar 

  114. M. Boscaro, N. Sonino, A. Rampazzo, F. Mantero, Response of pituitary-adrenal axis to corticotrophin releasing hormone in patients with Cushing’s disease before and after ketoconazole treatment. Clin. Endocrinol. (Oxf). 27, 461–467 (1987)

    CAS  PubMed  Google Scholar 

  115. P. Loli, M.E. Berselli, M. Tagliaferri, Use of ketoconazole in the treatment of Cushing’s syndrome. J. Clin. Endocrinol. Metab. 63, 1365–1371 (1986)

    CAS  PubMed  Google Scholar 

  116. D. Engelhardt, M.M. Weber, Therapy of Cushing’s syndrome with steroid biosynthesis inhibitors. J. Steroid Biochem. Mol. Biol. 49, 261–267 (1994)

    CAS  PubMed  Google Scholar 

  117. T.A. Miettinen, Cholesterol metabolism during ketoconazole treatment in man. J. Lipid Res. 29, 43–51 (1988)

    CAS  PubMed  Google Scholar 

  118. M.I. Dushkin, N.K. Zenkov, E.B. Menshikova, E.N. Pivovarova, G. Lyubimov, N.N. Volsky, Ketoconazole inhibits oxidative modification of low density lipoprotein. Atherosclerosis 114, 9–18 (1995)

    CAS  PubMed  Google Scholar 

  119. X. Bertagna, L. Guignat, L. Groussin, J. Bertherat, Cushing’s disease. Best Pract. Res. Clin. Endocrinol. Metab. 23, 607–623 (2009)

    CAS  PubMed  Google Scholar 

  120. C.N. Dang, O. Trainer, Pharmacological management of Cushing’s syndrome: an update. Arq. Bras. Endocrinol. Metabol. 51, 1339–1348 (2007)

    PubMed  Google Scholar 

  121. B.A. Gross, S.A. Mindea, A.J. Pick, J.P. Chandler, H.H. Batjer, Medical management of Cushing disease. Neurosurg. Focus 23, E10 (2007)

    PubMed  Google Scholar 

  122. J.A. Verhelst, P.J. Trainer, T.A. Howlett, L. Perry, L.H. Rees, A.B. Grossman, J.A. Wass, G.M. Besser, Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin. Endocrinol. (Oxf). 35, 169–178 (1991)

    CAS  PubMed  Google Scholar 

  123. T. Mancini, T. Porcelli, A. Giustina, Treatment of Cushing disease: overview and recent findings. Ther. Clin. Risk Manag. 6, 505–516 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  124. L.K. Nieman, Medical therapy of Cushing’s disease. Pituitary 5, 77–82 (2002)

    CAS  PubMed  Google Scholar 

  125. M. Terzolo, A. Angeli, M. Fassnacht, F. Daffara, L. Tauchmanova, P.A. Conton, R. Rossetto, L. Buci, P. Sperone, E. Grossrubatscher, G. Reimondo, E. Bollito, M. Papotti, W. Saeger, S. Hahner, A.C. Koschker, E. Arvat, B. Ambrosi, P. Loli, G. Lombardi, M. Mannelli, P. Bruzzi, F. Mantero, B. Allolio, L. Dogliotti, A. Berruti, Adjuvant mitotane treatment for adrenocortical carcinoma. N. Engl. J. Med. 356, 2372–2380 (2007)

    CAS  PubMed  Google Scholar 

  126. E. Gentilin, F. Tagliati, M. Terzolo, M. Zoli, M. Lapparelli, M. Minoia, M.R. Ambrosio, E.C. degli Uberti, M.C. Zatelli, Mitotane reduces human and mouse ACTH-secreting pituitary cells viability and function. J. Endocrinol. 218, 275–285 (2013)

    CAS  PubMed  Google Scholar 

  127. M.C. Zatelli, E. Gentilin, F. Daffara, F. Tagliati, G. Reimondo, G. Carandina, M.R. Ambrosio, M. Terzolo, E.C. degli Uberti, Therapeutic concentrations of mitotane (o,p′-DDD) inhibit thyrotroph cell viability and TSH expression and secretion in a mouse cell line model. Endocrinology 151, 2453–2461 (2010)

    CAS  PubMed  Google Scholar 

  128. J.P. Luton, J.A. Mahoudeau, P. Bouchard, P. Thieblot, M. Hautecouverture, D. Simon, M.H. Laudat, Y. Touitou, H. Bricaire, Treatment of Cushing’s disease by o,p′DDD. Survey of 62 cases. N. Engl. J. Med. 300, 459–464 (1979)

    CAS  PubMed  Google Scholar 

  129. D.E. Schteingart, H.S. Tsao, C.I. Taylor, A. McKenzie, R. Victoria, B.A. Therrien, Sustained remission of Cushing’s disease with mitotane and pituitary irradiation. Ann. Intern. Med. 92, 613–619 (1980)

    CAS  PubMed  Google Scholar 

  130. D. LaSala, Y. Shibanaka, A.Y. Jeng, Coexpression of CYP11B2 or CYP11B1 with adrenodoxin and adrenodoxin reductase for assessing the potency and selectivity of aldosterone synthase inhibitors. Anal. Biochem. 394, 56–61 (2009)

    CAS  PubMed  Google Scholar 

  131. L. Amar, M. Azizi, J. Menard, S. Peyrard, C. Watson, P.F. Plouin, Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56, 831–838 (2010)

    CAS  PubMed  Google Scholar 

  132. D.A. Calhoun, W.B. White, H. Krum, W. Guo, G. Bermann, A. Trapani, M.P. Lefkowitz, J. Menard, Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation 124, 1945–1955 (2011)

    CAS  PubMed  Google Scholar 

  133. N.A. Tritos, B.M. Biller, Advances in medical therapies for Cushing’s syndrome. Discov. Med. 13, 171–179 (2011)

    Google Scholar 

  134. X. Bertagna, R. Pivonello, M. Fleseriu, J. Zhang, P. Robinson, A. Taylor, C. Watson, M. Maldonado, A. Hamraian, M. Boscaro, Patients with Cushing’s disease achieve normal urinary cortisol with LCI699, a potent 11B-hydroxylase inhibitor: preliminary results from a multicenter, proof-of-concept study, in 15th International and 14th European Congress of Endocrinology (ICE/ECE 2012), Florence, Italy (abstract OC1.2) (2012)

  135. P. Dewis, D.C. Anderson, D.E. Bu’lock, R. Earnshaw, W.F. Kelly, Experience with trilostane in the treatment of Cushing’s syndrome. Clin. Endocrinol. (Oxf). 18, 533–540 (1983)

    CAS  PubMed  Google Scholar 

  136. P. Komanicky, R.F. Spark, J.C. Melby, Treatment of Cushing’s syndrome with trilostane (WIN 24,540), an inhibitor of adrenal steroid biosynthesis. J. Clin. Endocrinol. Metab. 47, 1042–1051 (1978)

    CAS  PubMed  Google Scholar 

  137. S. Hahner, A. Stürmer, M. Fassnacht, R.W. Hartmann, K. Schewe, S. Cochran, M. Zink, A. Schirbel, B. Allolio, Etomidate unmasks intraadrenal regulation of steroidogenesis and proliferation in adrenal cortical cell lines. Horm. Metab. Res. 42, 528–534 (2010)

    CAS  PubMed  Google Scholar 

  138. N. Mettauer, J. Brierley, A novel use of etomidate for intentional adrenal suppression to control severe hypercortisolemia in childhood. Pediatr. Crit. Care Med. 10, e37–e40 (2009)

    PubMed  Google Scholar 

  139. P. Kamenicky, C. Droumaguet, S. Salenave, A. Blanchard, C. Jublanc, J.F. Gautier, S. Brailly-Tabard, S. Leboulleux, M. Schlumberger, E. Baudin, P. Chanson, J. Young, Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J. Clin. Endocrinol. Metab. 96, 2796–2804 (2011)

    CAS  PubMed  Google Scholar 

  140. S. Johanssen, B. Allolio, Mifepristone (RU 486) in Cushing’s syndrome. Eur. J. Endocrinol. 157, 561–569 (2007)

    CAS  PubMed  Google Scholar 

  141. M.C. Lebeau, E.E. Baulieu, Steroid antagonists and receptor-associated proteins. Hum. Reprod. 9, 437–444 (1994)

    CAS  PubMed  Google Scholar 

  142. C.M. Bamberger, G.P. Chrousos, The glucocorticoid receptor and RU 486 in man. Ann. N. Y. Acad. Sci. 761, 296–310 (1995)

    CAS  PubMed  Google Scholar 

  143. M.D. Heitzer, I.M. Wolf, E.R. Sanchez, S.F. Witchel, D.B. DeFranco, Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 8, 321–330 (2007)

    CAS  PubMed  Google Scholar 

  144. H.F. Yang-Yen, J.C. Chambard, Y.L. Sun, T. Smeal, T.J. Schmidt, J. Drouin, M. Karin, Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein–protein interaction. Cell 62, 1205–1215 (1990)

    CAS  PubMed  Google Scholar 

  145. C.M. Jewell, J.C. Webster, K.L. Burnstein, M. Sar, J.E. Bodwell, J.A. Cidlowski, Immunocytochemical analysis of hormone mediated nuclear translocation of wild type and mutant glucocorticoid receptors. J. Steroid Biochem. Mol. Biol. 55, 135–146 (1995)

    CAS  PubMed  Google Scholar 

  146. B.W. Peeters, G.S. Ruigt, M. Craighead, P. Kitchener, Differential effects of the new glucocorticoid receptor antagonist ORG 34517 and RU486 (mifepristone) on glucocorticoid receptor nuclear translocation in the AtT20 cell line. Ann. N. Y. Acad. Sci. 1148, 536–541 (2008)

    CAS  PubMed  Google Scholar 

  147. F. Spiga, D.M. Knight, S.K. Droste, B. Conway-Campbell, Y. Kershaw, C.P. MacSweeney, F.J. Thomson, M. Craighead, B.W. Peeters, S.L. Lightman, Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding. J. Psychopharmacol. 25, 211–221 (2011)

    CAS  PubMed  Google Scholar 

  148. R. Sitruk-Ware, I.M. Spitz, Pharmacological properties of mifepristone: toxicology and safety in animal and human studies. Contraception 68, 409–420 (2003)

    CAS  PubMed  Google Scholar 

  149. X. Bertagna, C. Bertagna, M.H. Laudat, J.M. Husson, F. Girard, J.P. Luton, Pituitary-adrenal response to the antiglucocorticoid action of RU 486 in Cushing’s syndrome. J. Clin. Endocrinol. Metab. 63, 639–643 (1986)

    CAS  PubMed  Google Scholar 

  150. J.W. Chu, D.F. Matthias, J. Belanoff, A. Schatzberg, A.R. Hoffman, D. Feldman, Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J. Clin. Endocrinol. Metab. 86, 3568–3573 (2001)

    CAS  PubMed  Google Scholar 

  151. A.M. Isidori, G.A. Kaltsas, C. Pozza, V. Frajese, J. Newell-Price, R.H. Reznek, P.J. Jenkins, J.P. Monson, A.B. Grossman, G.M. Besser, The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. J. Clin. Endocrinol. Metab. 91, 371–377 (2006)

    CAS  PubMed  Google Scholar 

  152. F. Castinetti, M. Fassnacht, S. Johanssen, M. Terzolo, P. Bouchard, P. Chanson, C. Do Cao, I. Morange, A. Pico, S. Ouzounian, J. Young, S. Hahner, T. Brue, B. Allolio, B. Conte-Devolx, Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur. J. Endocrinol. 160, 1003–1010 (2009)

    CAS  PubMed  Google Scholar 

  153. F. Castinetti, B. Conte-Devolx, T. Brue, Medical treatment of Cushing’s syndrome: glucocorticoid receptor antagonists and mifepristone. Neuroendocrinology 92(Suppl 1), 125–130 (2010)

    CAS  PubMed  Google Scholar 

  154. M. Fleseriu, B.M. Biller, J.W. Findling, M.E. Molitch, D.E. Schteingart, C. Gross, Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 97, 2039–2049 (2012)

    CAS  PubMed  Google Scholar 

  155. P.M. Stewart, B.R. Walker, G. Holder, D. O’Halloran, C.H. Shackleton, 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80, 3617–3620 (1995)

    CAS  PubMed  Google Scholar 

  156. S.H. van Uum, J.W. Lenders, A.R. Hermus, Cortisol, 11beta-hydroxysteroid dehydrogenases, and hypertension. Semin. Vasc. Med. 4, 121–128 (2004)

    PubMed  Google Scholar 

  157. J.D. Carmichael, M. Fleseriu, Mifepristone: is there a place in the treatment of Cushing’s disease? Endocrine 44, 20–32 (2013)

    CAS  PubMed  Google Scholar 

  158. G.A. Kaltsas, P. Nomikos, G. Kontogeorgos, M. Buchfelder, A.B. Grossman, Clinical review: diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab. 90, 3089–3099 (2005)

    CAS  PubMed  Google Scholar 

  159. B.T. Ragel, W.T. Couldwell, Pituitary carcinoma: a review of the literature. Neurosurg. Focus 16, 1–9 (2004)

    Google Scholar 

  160. R.E. Landman, M. Horwith, R.E. Peterson, A.G. Khandji, S.L. Wardlaw, Long-term survival with ACTH-secreting carcinoma of the pituitary: a case report and review of the literature. J. Clin. Endocrinol. Metab. 87, 3084–3089 (2002)

    CAS  PubMed  Google Scholar 

  161. G.A. Kaltsas, J.J. Mukherjee, The role of cytotoxic chemotherapy in the management of aggressive and malignant pituitary tumors. J. Clin. Endocrinol. Metab. 83, 4233–4238 (1998)

    CAS  PubMed  Google Scholar 

  162. A.A. van der Klaauw, T. Kienitz, C.J. Strasburger, J.W. Smit, J.A. Romijn, Malignant pituitary corticotroph adenomas: report of two cases and a comprehensive review of the literature. Pituitary 12, 57–69 (2009)

    PubMed  Google Scholar 

  163. K. Cukier, R. Tewari, F. Kurth, H.A. Schmid, C. Lai, D.J. Torpy, Significant response to pasireotide (SOM230) in the treatment of a patient with persistent, refractory Cushing’s disease. Clin. Endocrinol. (Oxf). 71, 305–307 (2009)

    CAS  PubMed  Google Scholar 

  164. H. Bode, M. Seiz, A. Lammert, M.A. Brockmann, W. Back, H.P. Hammes, C. Thomé, SOM230 (pasireotide) and temozolomide achieve sustained control of tumour progression and ACTH secretion in pituitary carcinoma with widespread metastases. Exp. Clin. Endocrinol. Diabetes 118, 760–763 (2010)

    CAS  PubMed  Google Scholar 

  165. G. Raverot, N. Sturm, F. de Fraipont, M. Muller, S. Salenave, P. Caron, O. Chabre, P. Chanson, C. Cortet-Rudelli, R. Assaker, H. Dufour, S. Gaillard, P. François, E. Jouanneau, J.G. Passagia, M. Bernier, A. Cornélius, D. Figarella-Branger, J. Trouillas, F. Borson-Chazot, T. Brue, Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J. Clin. Endocrinol. Metab. 95, 4592–4599 (2010)

    CAS  PubMed  Google Scholar 

  166. C.E. Fadul, A.L. Kominsky, L.P. Meyer, L.S. Kingman, W.B. Kinlaw, C.H. Rhodes, C.J. Eskey, N.E. Simmons, Long-term response of pituitary carcinoma to temozolamide. Report of two cases. J. Neurosurg. 105, 621–626 (2006)

    PubMed  Google Scholar 

  167. C. Hagen, H.D. Schroder, S. Hansen, C. Hagen, M. Andersen, Temozolamide treatment of a pituitary carcinoma and two pituitary macroadenomas resistant to conventional therapy. Eur. J. Endocrinol. 161, 631–637 (2009)

    CAS  PubMed  Google Scholar 

  168. A.I. McCormack, K.L. McDonald, A.J. Gill, S.J. Clark, M.G. Burt, K.A. Campbell, W.J. Braund, N.S. Little, R.J. Cook, A.B. Grossman, B.G. Robinson, R.J. Clifton-Bligh, Low O6-methylguanine-DNA methyltransferase (MGMT) expression and response to temozolomide in aggressive pituitary tumours. Clin. Endocrinol. 71, 226–233 (2009)

    CAS  Google Scholar 

  169. M. Thearle, P. Freda, J. Bruce, S. Isaacson, Y. Lee, R. Fine, Temozolomide (Temodar®) and capecitabine (Xeloda®) treatment of an aggressive corticotroph pituitary tumor. Pituitary 14, 418–424 (2011)

    PubMed Central  PubMed  Google Scholar 

  170. M. Basina, H. Liu, A.R. Hoffman, D. Feldman, Successful long-term treatment of Cushing disease with mifepristone (RU486). Endocr. Pract. 18, e114–e120 (2012)

    PubMed  Google Scholar 

  171. L.F. Chan, M. Vaidya, B. Westphal, J. Allgrove, L. Martin, F. Afshar, P.C. Hindmarsh, M.O. Savage, A.B. Grossman, H.L. Storr, Use of intravenous etomidate to control acute psychosis induced by the hypercortisolaemia in severe paediatric Cushing’s disease. Horm. Res. Paediatr. 75, 441–446 (2011)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Italian Ministry of Education, Research and University (FIRB RBAP11884M; RBAP1153LS; PRIN 2008LFK7J5_004), Fondazione Cassa di Risparmio di Ferrara, and Associazione Italiana per la Ricerca sul Cancro (AIRC) in collaboration with Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of Ferrara; CARIGE Foundation, Genova.

Disclosure

D. Ferone, A. Colao, R. Pivonello report serving as an ad hoc consultant to Novartis, and receiving research grant support. The remaining authors do not have any relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ferone.

Additional information

This study was conducted on behalf of ABC (Altogether to Beat Cushing’s syndrome) Group.

The members of the ABC Group are listed in Appendix.

D. Ferone, C. Pivonello, G. Vitale and M. C. Zatelli have contributed equally to this work.

Appendix

Appendix

ABC (Altogether to Beat Cushing’s syndrome) 2012 Group: N. Albiger, A. Ambrogio, G. Arnaldi, E. Arvat, R. Baldelli, R. Berardelli, M. Boscaro, S. Cannavò, F. Cavagnini, A. Colao, S.M. Corsello, A. Cozzolino, A. De Bartolomeis, M. De Leo, G. Di Minno, C. Di Somma, K. Esposito, G. Fabbrocini, D. Ferone, C. Foresta, M. Galderisi, C. Giordano, D. Giugliano, A. Giustina, F. Grimaldi, A.M. Isidori, E. Jannini, F. Lombardo, L. Manetti, M. Mannelli, F. Mantero, G. Marone, G. Mazziotti, S. Moretti, E. Nazzari, R.M. Paragliola, R. Pasquali, S. Pecorelli, F. Pecori Giraldi, C. Pivonello, R. Pivonello, G. Reimondo, C. Scaroni, A. Scillitani, C. Simeoli, A. Stigliano, V. Toscano, L. Trementino, G. Vitale, M.C. Zatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferone, D., Pivonello, C., Vitale, G. et al. Molecular basis of pharmacological therapy in Cushing’s disease. Endocrine 46, 181–198 (2014). https://doi.org/10.1007/s12020-013-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0098-5

Keywords

Navigation