Skip to main content

Advertisement

Log in

Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Hypothyroidism has a variety of adverse effects on cognitive function. The treatment of levothyroxine alone cannot restore cognitive defects of hypothyroid patients. Antioxidant vitamin E supplementation could be useful in disturbances which are associated with oxidative stress and could effectively slow the progression of Alzheimer disease. Thus, the purpose of this study was to evaluate oxidative stress status of the serum and hippocampus in hypothyroidism and to examine the effects of levothyroxine replacement therapy with vitamin E supplementation on cognitive deficit. Sprague–Dawley rats were randomly divided into five groups: control group, PTU group, PTU + Vit E group, PTU + L-T4 group, and PTU + L-T4 + Vit E group. Serum and hippocampus malondialdehyde (MDA) levels were determined using the thiobarbituric-acid reactive substances method. Serum and hippocampus superoxide dismutase (SOD) levels were determined by measuring its ability to inhibit the photoreduction of nitroblue tetrazolium. Learning and memory was assessed by Morris water maze test. In the present study, we found that the rats of PTU + Vit E group spent less time to find the platform on days 2, 3, 4, and 5 than the PTU group. Moreover, the rats of PTU + L-T4 + Vit E group spent less time to find the platform on days 4 and 5 than the PTU + L-T4 group. The time spent in the target quadrants was measured in the probe test and no difference was observed in all groups. Oxidative damage has been observed in the serum and hippocampus of hypothyroidism rat. SOD levels of serum and hippocampus tissue were significantly increased and MDA levels were significantly decreased in the PTU + Vit E and PTU + L-T4 + Vit E groups than the PTU and PTU + L-T4 groups. Therefore, these findings indicate that levothyroxine replacement therapy with vitamin E supplementation may ameliorate cognitive deficit in PTU-induced hypothyroidism through the decrease of oxidative stress status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Y. Anjana, O.P. Tandon, N. Vaney, S.V. Madhu, Cognitive status in hypothyroid female patients: event-related evoked potential study. Neuroendocrinology 88(1), 59–66 (2008)

    Article  PubMed  CAS  Google Scholar 

  2. D. Osterweil, K. Syndulko, S.N. Cohen, P.D. Pettler-Jennings, J.M. Hershman, J.L. Cummings, W.W. Tourtellotte, D.H. Solomon, Cognitive function in non-demented older adults with hypothyroidism. J. Am. Geriatr. Soc. 40(4), 325–335 (1992)

    PubMed  CAS  Google Scholar 

  3. E.M. Wekking, B.C. Appelhof, E. Fliers, A.H. Schene, J. Huyser, J.G. Tijssen, W.M. Wiersinga, Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur. J. Endocrinol. 153(6), 747–753 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. L. Oziol, P. Faure, N. Bertrand, P. Chomard, Inhibition of in vitro macrophage-induced low density lipoprotein oxidation by thyroid compounds. J. Endocrinol. 177(1), 137–146 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. B. Dursun, E. Dursun, I. Capraz, T. Ozben, A. Apaydin, G. Suleymanlar, Are uremia, diabetes, and atherosclerosis linked with impaired antioxidant mechanisms? J. Investig. Med. 56(2), 545–552 (2008)

    PubMed  CAS  Google Scholar 

  6. A.N. Torun, S. Kulaksizoglu, M. Kulaksizoglu, B.O. Pamuk, E. Isbilen, N.B. Tutuncu, Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin. Endocrinol. 70(3), 469–474 (2009)

    Article  Google Scholar 

  7. C.A. Massaad, E. Klann, Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid. Redox Signal. 14(10), 2013–2054 (2011)

    Article  PubMed  CAS  Google Scholar 

  8. A. Seven, O. Seymen, S. Hatemi, H. Hatemi, G. Yigit, G. Candan, Antioxidant status in experimental hyperthyroidism: effect of vitamin E supplementation. Clin. Chim. Acta 256(1), 65–74 (1996)

    Article  PubMed  CAS  Google Scholar 

  9. C. Brockes, C. Buchli, R. Locher, J. Koch, W. Vetter, Vitamin E prevents extensive lipid peroxidation in patients with hypertension. Br. J. Biomed. Sci. 60(1), 5–8 (2003)

    PubMed  CAS  Google Scholar 

  10. P.P. Zandi, J.C. Anthony, A.S. Khachaturian, S.V. Stone, D. Gustafson, J.T. Tschanz, M.C. Norton, K.A. Welsh-Bohmer, J.C. Breitner, Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache county study. Arch. Neurol. 61(1), 82–88 (2004)

    Article  PubMed  Google Scholar 

  11. M.J. Forster, A. Dubey, K.M. Dawson, W.A. Stutts, H. Lal, R.S. Sohal, Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. USA 93(10), 4765–4769 (1996)

    Article  PubMed  CAS  Google Scholar 

  12. H.Y. Yang, C.P. Sun, X.M. Jia, L. Gui, D.F. Zhu, W.Q. Ma, Effect of Thyroxine on SNARE complex and synaptotagmin-1 expression in the prefrontal cortex of rats with adult-onset hypothyroidism. J. Endocrinol. Invest. 35(3), 312–316 (2012)

    PubMed  CAS  Google Scholar 

  13. H.H. Draper, M. Hadley, Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186, 421–431 (1990)

    Article  PubMed  CAS  Google Scholar 

  14. M. Messarah, A. Boumendjel, A. Chouabia, F. Klibet, C. Abdennour, M.S. Boulakoud, A.E. Feki, Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. Exp. Toxicol. Pathol. 62(3), 301–310 (2010)

    Article  PubMed  CAS  Google Scholar 

  15. X. Zhong, L. Xiu, G. Wei, T. Pan, Y. Liu, L. Su, Y. Li, H. Xiao, Bezafibrate prevents palmitate-induced apoptosis in osteoblastic MC3T3-E1 cells through the NF-kappaB signaling pathway. Int. J. Mol. Med. 28(4), 535–542 (2011)

    PubMed  CAS  Google Scholar 

  16. F. Kong, L. Xu, D. He, X. Zhang, H. Lu, Effects of gestational isoflurane exposure on postnatal memory and learning in rats. Eur. J. Pharmacol. 670(1), 168–174 (2011)

    Article  PubMed  CAS  Google Scholar 

  17. D. Konukoglu, M. Ercan, H. Hatemi, Plasma viscosity in female patients with hypothyroidism: effects of oxidative stress and cholesterol. Clin. Hemorheol. Microcirc. 27(2), 107–113 (2002)

    PubMed  CAS  Google Scholar 

  18. S. Yilmaz, S. Ozan, F. Benzer, H. Canatan, Oxidative damage and antioxidant enzyme activities in experimental hypothyroidism. Cell Biochem. Funct. 21(4), 325–330 (2003)

    Article  PubMed  CAS  Google Scholar 

  19. E. Brzezinska-Slebodzinska, Influence of hypothyroidism on lipid peroxidation, erythrocyte resistance and antioxidant plasma properties in rabbits. Acta Vet. Hung. 51(3), 343–351 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. K. Das, G.B. Chainy, Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim. Biophys. Acta 1537(1), 1–13 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. G. Baskol, H. Atmaca, F. Tanriverdi, M. Baskol, D. Kocer, F. Bayram, Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp. Clin. Endocrinol. Diabetes 115(8), 522–526 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. R.A. Floyd, K. Hensley, Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23(5), 795–807 (2002)

    Article  PubMed  CAS  Google Scholar 

  23. S. Loft, A. Astrup, B. Buemann, H.E. Poulsen, Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 8(8), 534–537 (1994)

    PubMed  CAS  Google Scholar 

  24. A.J. Smith, H. Blumenfeld, K.L. Behar, D.L. Rothman, R.G. Shulman, F. Hyder, Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc. Natl. Acad. Sci. USA 99(16), 10765–10770 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. M.J. Glade, Oxidative stress and cognitive longevity. Nutrition 26(6), 595–603 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. N. Burgess, E.A. Maguire, J. O’Keefe, The human hippocampus and spatial and episodic memory. Neuron 35(4), 625–641 (2002)

    Article  PubMed  CAS  Google Scholar 

  27. A.T. Dugbartey, Neurocognitive aspects of hypothyroidism. Arch. Intern. Med. 158(13), 1413–1418 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. M. Bauer, P.C. Whybrow, Thyroid hormone, neural tissue and mood modulation. World J. Biol. Psychiatry 2(2), 59–69 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. J. Jensovsky, E. Ruzicka, N. Spackova, B. Hejdukova, Changes of event related potential and cognitive processes in patients with subclinical hypothyroidism after thyroxine treatment. Endocr. Regul. 36(3), 115–122 (2002)

    PubMed  CAS  Google Scholar 

  30. G. Bono, R. Fancellu, F. Blandini, G. Santoro, M. Mauri, Cognitive and affective status in mild hypothyroidism and interactions with L-thyroxine treatment. Acta Neurol. Scand. 110(1), 59–66 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81070066).

Conflict of interest

Tianrong Pan, Mingkui Zhong, and Xing Zhong performed the research and analyzed the data, Yanqing Zhang and Tianrong Pan wrote the manuscript, Defa Zhu designed the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defa Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, T., Zhong, M., Zhong, X. et al. Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine 43, 434–439 (2013). https://doi.org/10.1007/s12020-012-9801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9801-1

Keywords:

Navigation