Skip to main content

Advertisement

Log in

Clinical implications of growth hormone–secreting tumor subtypes

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Growth hormone (GH) pituitary tumors are almost always benign adenomas, yet are associated with significant morbidity and mortality. Surgical and medical responses of GH tumors are often incomplete, and therefore predictors of residual or recurrent disease are needed. Clinical features, including patient gender, age or size of adenoma, have proven to be unreliable predictors of recurrence. Differing clinical behavior between the two GH tumor subtypes, sparsely granulated (SG) versus densely granulated (DG), has been reported, but has not been used routinely in clinical management. SG tumors are more common in younger patients (<50 years), and are usually larger tumors. SG tumors have been reported to be less responsive to somatostatin analogs (SSA) than DG tumors. The mechanisms underlying these potential differences in tumor behavior, however, are poorly defined. Subsets (up to 50 %) of DG adenomas harbor a gsp mutation that can activate cAMP that provides a theoretical intracellular target for somatostatin therapy. In contrast, some SG tumors have reduced somatostatin receptor expression and mutations in the extracellular domain of the GH receptor that may contribute to SSA resistance. While DG versus SG growth hormone adenomas are readily distinguished by immunohistochemistry, other less common GH adenoma variants still require electron microscopy (EM) for confident subclassification. Whether these less common variants possess unique clinical features is unknown. Research is needed to identify clinically relevant biomarkers of GH pituitary tumors that predict risk of recurrence and response to medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.L. Asa, S. Ezzat, The pathogenesis of pituitary tumors. Annu. Rev. Pathol. 4, 97–126 (2009). doi:10.1146/annurev.pathol.4.110807.092259

    Article  PubMed  CAS  Google Scholar 

  2. S. Melmed, Acromegaly pathogenesis and treatment. J. Clin. Invest. 119(11), 3189–3202 (2009). doi:10.1172/JCI3937539375

    Article  PubMed  CAS  Google Scholar 

  3. I. Shimon, Z.R. Cohen, Z. Ram, M. Hadani, Transsphenoidal surgery for acromegaly: endocrinological follow-up of 98 patients. Neurosurgery 48(6), 1239–1243 (2001). Discussion 1244–1235

    PubMed  CAS  Google Scholar 

  4. A. Giustina, P. Chanson, M.D. Bronstein, A. Klibanski, S. Lamberts, F.F. Casanueva, P. Trainer, E. Ghigo, K. Ho, S. Melmed, A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95(7), 3141–3148 (2010). doi:10.1210/jc.2009-2670

    Article  PubMed  CAS  Google Scholar 

  5. S. Melmed, A. Colao, A. Barkan, M. Molitch, A.B. Grossman, D. Kleinberg, D. Clemmons, P. Chanson, E. Laws, J. Schlechte, M.L. Vance, K. Ho, A. Giustina, Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94(5), 1509–1517 (2009). doi:10.1210/jc.2008-2421

    Article  PubMed  CAS  Google Scholar 

  6. I. Donangelo, S. Melmed, Treatment of acromegaly: future. Endocrine 28(1), 123–128 (2005). doi:10.1385/ENDO:28:1:123

    Article  PubMed  CAS  Google Scholar 

  7. A. Stevenaert, A. Beckers, Presurgical Octreotide: treatment in acromegaly. Metabolism 45(8 Suppl 1), 72–74 (1996)

    Article  PubMed  CAS  Google Scholar 

  8. D.R. Clemmons, K. Chihara, P.U. Freda, K.K. Ho, A. Klibanski, S. Melmed, S.M. Shalet, C.J. Strasburger, P.J. Trainer, M.O. Thorner, Optimizing control of acromegaly: integrating a growth hormone receptor antagonist into the treatment algorithm. J. Clin. Endocrinol. Metab. 88(10), 4759–4767 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. J.D. Carmichael, V.S. Bonert, J.M. Mirocha, S. Melmed, The utility of oral glucose tolerance testing for diagnosis and assessment of treatment outcomes in 166 patients with acromegaly. J. Clin. Endocrinol. Metab. 94(2), 523–527 (2009). doi:10.1210/jc.2008-1371

    Article  PubMed  CAS  Google Scholar 

  10. A. Giustina, T. Porcelli, Pituitary gland: medical therapy for acromegaly: can we predict response? Nat. Rev. Endocrinol. 5(8), 425–427 (2009). doi:10.1038/nrendo.2009.146

    Article  PubMed  CAS  Google Scholar 

  11. P.U. Freda, Somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 87(7), 3013–3018 (2002)

    Article  PubMed  CAS  Google Scholar 

  12. P.J. Trainer, S. Ezzat, G.A. D’Souza, G. Layton, C.J. Strasburger, A randomized, controlled, multicentre trial comparing pegvisomant alone with combination therapy of pegvisomant and long-acting octreotide in patients with acromegaly. Clin. Endocrinol. 71(4), 549–557 (2009). doi:10.1111/j.1365-2265.2009.03620.x

    Article  CAS  Google Scholar 

  13. P. Lundin, B. Eden Engstrom, F.A. Karlsson, P. Burman, Long-term octreotide therapy in growth hormone-secreting pituitary adenomas: evaluation with serial MR. AJNR Am. J. Neuroradiol. 18(4), 765–772 (1997)

    PubMed  CAS  Google Scholar 

  14. C. Salaun, L. Foubert, M. Vialatou, M. Kujas, G. Turpin, Prognostic factors in the surgical management of acromegaly. Ann. Med. Interne 150(3), 195–198 (1999)

    CAS  Google Scholar 

  15. P. Nomikos, M. Buchfelder, R. Fahlbusch, The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’. Eur. J. Endocrinol. 152(3), 379–387 (2005). doi:10.1530/eje.1.01863

    Article  PubMed  CAS  Google Scholar 

  16. A. Abosch, J.B. Tyrrell, K.R. Lamborn, L.T. Hannegan, C.B. Applebury, C.B. Wilson, Transsphenoidal microsurgery for growth hormone-secreting pituitary adenomas: initial outcome and long-term results. J. Clin. Endocrinol. Metab. 83(10), 3411–3418 (1998)

    Article  PubMed  CAS  Google Scholar 

  17. Roelfsema, F., Biermasz, N.R., Pereira, A.M.: Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary (2011). doi:10.1007/s11102-011-0347-7

  18. A. Fusco, M.C. Zatelli, A. Bianchi, V. Cimino, L. Tilaro, F. Veltri, F. Angelini, L. Lauriola, V. Vellone, F. Doglietto, M.R. Ambrosio, G. Maira, A. Giustina, E.C. degli Uberti, A. Pontecorvi, L. De Marinis, Prognostic significance of the Ki-67 labeling index in growth hormone-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 93(7), 2746–2750 (2008). doi:10.1210/jc.2008-0126

    Article  PubMed  CAS  Google Scholar 

  19. C.H. Botelho, A.V. Magalhaes, P.A. Mello, F.C. Schmitt, L.A. Casulari, Expression of p53, Ki-67 and c-erb B2 in growth hormone-and/or prolactin-secreting pituitary adenomas. Arq. Neuropsiquiatr. 64(1), 60–66 (2006). doi:/S0004-282X2006000100013

    Article  PubMed  Google Scholar 

  20. K. Yonezawa, N. Tamaki, T. Kokunai, Clinical features and growth fractions of pituitary adenomas. Surg. Neurol. 48(5), 494–500 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. S.S. Zuhur, C. Tanik, O. Karaman, S. Velet, E. Cil, F.Y. Ozturk, H. Ozkayalar, A.M. Musluman, Y. Altuntas, MGMT immunoexpression in growth hormone-secreting pituitary adenomas and its correlation with Ki-67 labeling index and cytokeratin distribution pattern. Endocrine 40(2), 222–227 (2011). doi:10.1007/s12020-011-9485-y

    Article  PubMed  CAS  Google Scholar 

  22. G. Kontogeorgos, Classification and pathology of pituitary tumors. Endocrine 28(1), 27–35 (2005). doi:10.1385/ENDO:28:1:027

    Article  PubMed  CAS  Google Scholar 

  23. S. Bhayana, G.L. Booth, S.L. Asa, K. Kovacs, S. Ezzat, The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J. Clin. Endocrinol. Metab. 90(11), 6290–6295 (2005). doi:10.1210/jc.2005-0998

    Article  PubMed  CAS  Google Scholar 

  24. Asa, S.L.: Tumors of the pituitary gland. Atlas of Tumor Pathology, vol. Third Series; Fasicle 22. Armed Forces Institute of Pathology, Washington, DC (1998)

  25. M.B. Lopes, Growth hormone-secreting adenomas: pathology and cell biology. Neurosurg. Focus 29(4), E2 (2010). doi:10.3171/2010.7.FOCUS10169

    Article  PubMed  Google Scholar 

  26. K. Kovacs, E. Horvath, B. Corenblum, A.M. Sirek, G. Penz, C. Ezrin, Pituitary chromophobe adenomas consisting of prolactin cells: a histologic, immunocytological and electron microscopic study. Virchows Arch. A Pathol. Anat. Histol. 366(2), 113–123 (1975)

    Article  PubMed  CAS  Google Scholar 

  27. E. Horvath, K. Kovacs, Ultrastructural classification of pituitary adenomas. Can. J. Neurol. Sci. 3(1), 9–21 (1976)

    PubMed  CAS  Google Scholar 

  28. T. Sano, T. Ohshima, S. Yamada, Expression of glycoprotein hormones and intracytoplasmic distribution of cytokeratin in growth hormone-producing pituitary adenomas. Pathol. Res. Pract. 187(5), 530–533 (1991)

    Article  PubMed  CAS  Google Scholar 

  29. V. Karantza, Keratins in health and cancer: more than mere epithelial cell markers. Oncogene 30(2), 127–138 (2011). doi:10.1038/onc.2010.456

    Article  PubMed  CAS  Google Scholar 

  30. H. Bando, T. Sano, T. Ohshima, C.Y. Zhang, R. Yamasaki, K. Matsumoto, S. Saito, Differences in pathological findings and growth hormone responses in patients with growth hormone-producing pituitary adenoma. Endocrinol. Jpn. 39(4), 355–363 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. A. Obari, T. Sano, K. Ohyama, E. Kudo, Z.R. Qian, A. Yoneda, N. Rayhan, M. Mustafizur Rahman, S. Yamada, Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr. Pathol. 19(2), 82–91 (2008). doi:10.1007/s12022-008-9029-z

    Article  PubMed  Google Scholar 

  32. P.R. Mazal, T. Czech, R. Sedivy, M. Aichholzer, J. Wanschitz, N. Klupp, H. Budka, Prognostic relevance of intracytoplasmic cytokeratin pattern, hormone expression profile, and cell proliferation in pituitary adenomas of akromegalic patients. Clin. Neuropathol. 20(4), 163–171 (2001)

    PubMed  CAS  Google Scholar 

  33. S. Yamada, T. Aiba, T. Sano, K. Kovacs, Y. Shishiba, S. Sawano, K. Takada, Growth hormone-producing pituitary adenomas: correlations between clinical characteristics and morphology. Neurosurgery 33(1), 20–27 (1993)

    Article  PubMed  CAS  Google Scholar 

  34. Y. Bakhtiar, H. Hirano, K. Arita, S. Yunoue, S. Fujio, A. Tominaga, T. Sakoguchi, K. Sugiyama, K. Kurisu, J. Yasufuku-Takano, K. Takano, Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur. J. Endocrinol. 163(4), 531–539 (2010). doi:10.1530/EJE-10-0586

    Article  PubMed  CAS  Google Scholar 

  35. J. Kreutzer, M.L. Vance, M.B. Lopes, E.R. Laws Jr, Surgical management of GH-secreting pituitary adenomas: an outcome study using modern remission criteria. J. Clin. Endocrinol. Metab. 86(9), 4072–4077 (2001)

    Article  PubMed  CAS  Google Scholar 

  36. I.A. Felix, E. Horvath, K. Kovacs, H.S. Smyth, D.W. Killinger, J. Vale, Mammosomatotroph adenoma of the pituitary associated with gigantism and hyperprolactinemia. A morphological study including immunoelectron microscopy. Acta Neuropathol. 71(1–2), 76–82 (1986)

    Article  PubMed  CAS  Google Scholar 

  37. S.L. Fougner, O. Casar-Borota, A. Heck, J.P. Berg, J. Bollerslev, Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin. Endocrinol. 76(1), 96–102 (2012). doi:10.1111/j.1365-2265.2011.04163.x

    Article  CAS  Google Scholar 

  38. J. Hardy, Transsphenoidial microsurgical treatment of pituitary tumours, in Recent Advances in the Diagnosis and Treatment of Pituitary Tumours, ed. by L. Linfoot (Raven Press, New York, 1979), pp. 375–387

    Google Scholar 

  39. E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4), 610–617 (1993). Discussion: 617–618

    Article  PubMed  CAS  Google Scholar 

  40. A. Hagiwara, Y. Inoue, K. Wakasa, T. Haba, T. Tashiro, T. Miyamoto, Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228(2), 533–538 (2003). doi:10.1148/radiol.22820206952282020695

    Article  PubMed  Google Scholar 

  41. A. Heck, G. Ringstad, S.L. Fougner, O. Casar-Borota, T. Nome, J. Ramm-Pettersen, J. Bollerslev, Intensity of pituitary adenoma on T2 weighted MRI predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin. Endocrinol. (2011). doi:10.1111/j.1365-2265.2011.04286.x

    Google Scholar 

  42. S. Ahmed, M. Elsheikh, I.M. Stratton, R.C. Page, C.B. Adams, J.A. Wass, Outcome of transphenoidal surgery for acromegaly and its relationship to surgical experience. Clin. Endocrinol. 50(5), 561–567 (1999)

    Article  CAS  Google Scholar 

  43. C. Beauregard, U. Truong, J. Hardy, O. Serri, Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly. Clin. Endocrinol. 58(1), 86–91 (2003)

    Article  Google Scholar 

  44. M. Arosio, M.A. Giovanelli, E. Riva, C. Nava, B. Ambrosi, G. Faglia, Clinical use of pre- and postsurgical evaluation of abnormal GH responses in acromegaly. J. Neurosurg. 59(3), 402–408 (1983). doi:10.3171/jns.1983.59.3.0402

    Article  PubMed  CAS  Google Scholar 

  45. S.J. Brockmeier, M. Buchfelder, R. Fahlbusch, TRH/GnRH test in acromegaly. Long-term follow-up experience with successfully treated patients. Horm. Metab. Res. 25(5), 275–277 (1993). doi:10.1055/s-2007-1002096

    Article  PubMed  CAS  Google Scholar 

  46. N.R. Biermasz, J.W. Smit, H. van Dulken, F. Roelfsema, Postoperative persistent thyrotrophin releasing hormone-induced growth hormone release predicts recurrence in patients with acromegaly. Clin. Endocrinol. 56(3), 313–319 (2002)

    Article  CAS  Google Scholar 

  47. S. Valdemarsson, S. Ljunggren, M. Bramnert, O. Norrhamn, C.H. Nordstrom, Early postoperative growth hormone levels: high predictive value for long-term outcome after surgery for acromegaly. J. Intern. Med. 247(6), 640–650 (2000)

    Article  PubMed  CAS  Google Scholar 

  48. C.L. Ronchi, V. Varca, C. Giavoli, P. Epaminonda, P. Beck-Peccoz, A. Spada, M. Arosio, Long-term evaluation of postoperative acromegalic patients in remission with previous and newly proposed criteria. J. Clin. Endocrinol. Metab. 90(3), 1377–1382 (2005). doi:10.1210/jc.2004-1974

    Article  PubMed  CAS  Google Scholar 

  49. L. De Marinis, A. Mancini, A. Bianchi, R. Gentilella, D. Valle, A. Giampietro, P. Zuppi, C. Anile, G. Maira, A. Giustina, Preoperative growth hormone response to thyrotropin-releasing hormone and oral glucose tolerance test in acromegaly: a retrospective evaluation of 50 patients. Metab. Clin. Exp. 51(5), 616–621 (2002)

    Article  PubMed  Google Scholar 

  50. B. Xu, T. Sano, K. Yoshimoto, S. Yamada, Downregulation of E-cadherin and its undercoat proteins in pituitary growth hormone cell adenomas with prominent fibrous bodies. Endocr. Pathol. 13(4), 341–351 (2002). doi:EP:13:4:341

    Article  PubMed  CAS  Google Scholar 

  51. T. Sano, Q.Z. Rong, N. Kagawa, S. Yamada, Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front. Horm. Res. 32, 127–132 (2004)

    Article  PubMed  CAS  Google Scholar 

  52. H. McNeill, M. Ozawa, R. Kemler, W.J. Nelson, Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62(2), 309–316 (1990). doi:0092-8674(90)90368-O

    Article  PubMed  CAS  Google Scholar 

  53. T. Brabletz, F. Hlubek, S. Spaderna, O. Schmalhofer, E. Hiendlmeyer, A. Jung, T. Kirchner, Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2), 56–65 (2005). doi:10.1159/000084509

    Article  PubMed  CAS  Google Scholar 

  54. M.J. Wheelock, K.R. Johnson, Cadherins as modulators of cellular phenotype. Annu. Rev. Cell Dev. Biol. 19, 207–235 (2003). doi:10.1146/annurev.cellbio.19.011102.111135

    Article  PubMed  CAS  Google Scholar 

  55. L. Vallar, A. Spada, G. Giannattasio, Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330(6148), 566–568 (1987). doi:10.1038/330566a0

    Article  PubMed  CAS  Google Scholar 

  56. C.A. Landis, S.B. Masters, A. Spada, A.M. Pace, H.R. Bourne, L. Vallar, GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340(6236), 692–696 (1989). doi:10.1038/340692a0

    Article  PubMed  CAS  Google Scholar 

  57. A. Spada, M. Arosio, D. Bochicchio, N. Bazzoni, L. Vallar, M. Bassetti, G. Faglia, Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J. Clin. Endocrinol. Metab. 71(6), 1421–1426 (1990)

    Article  PubMed  CAS  Google Scholar 

  58. F.H. Burton, K.W. Hasel, F.E. Bloom, J.G. Sutcliffe, Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene. Nature 350(6313), 74–77 (1991). doi:10.1038/350074a0

    Article  PubMed  CAS  Google Scholar 

  59. S.L. Asa, R. Digiovanni, J. Jiang, M.L. Ward, K. Loesch, S. Yamada, T. Sano, K. Yoshimoto, S.J. Frank, S. Ezzat, A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res. 67(15), 7505–7511 (2007). doi:10.1158/0008-5472.CAN-07-0219

    Article  PubMed  CAS  Google Scholar 

  60. B. Kola, M. Korbonits, S. Diaz-Cano, G. Kaltsas, D.G. Morris, S. Jordan, L. Metherell, M. Powell, S. Czirjak, G. Arnaldi, S. Bustin, M. Boscaro, F. Mantero, A.B. Grossman, Reduced expression of the growth hormone and type 1 insulin-like growth factor receptors in human somatotroph tumours and an analysis of possible mutations of the growth hormone receptor. Clin. Endocrinol. 59(3), 328–338 (2003)

    Article  CAS  Google Scholar 

  61. S.L. Asa, K.T. Coschigano, L. Bellush, J.J. Kopchick, S. Ezzat, Evidence for growth hormone (GH) autoregulation in pituitary somatotrophs in GH antagonist-transgenic mice and GH receptor-deficient mice. Am. J. Pathol. 156(3), 1009–1015 (2000). doi:10.1016/S0002-9440(10)64968-1

    Article  PubMed  CAS  Google Scholar 

  62. S. Ezzat, G. Kontogeorgos, D.A. Redelmeier, E. Horvath, A.G. Harris, K. Kovacs, In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur. J. Endocrinol. 133(6), 686–690 (1995)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest concerning the material and findings specified in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret E. Wierman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiseljak-Vassiliades, K., Shafi, S., Kerr, J.M. et al. Clinical implications of growth hormone–secreting tumor subtypes. Endocrine 42, 18–28 (2012). https://doi.org/10.1007/s12020-012-9660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9660-9

Keywords

Navigation