Skip to main content

Advertisement

Log in

Significance of platelet endothelial cell adhesion molecule-1 (PECAM-1) and intercellular adhesion molecule-1 (ICAM-1) expressions in preeclamptic placentae

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Although preeclampsia (PE) is one of the most important problems affecting pregnant women, etiologic factors in its development are still unclear. We aimed to investigate the expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and intercellular adhesion molecule-1 (ICAM-1) in preeclamptic and control healthy placentas. Placental tissue samples were obtained after delivery from patients diagnosed with PE, and from normal term pregnants and analyzed by immunohistochemistry for the expression levels of the two adhesion molecules PECAM-1 and ICAM-1. A strong expression of PECAM-1 in endothelial cells lining the vessel walls of placental villi in placentas of control group was found, but the intensity of PECAM-1 expression was highly reduced in placentas of PE group (p = 0.017). Conversely, a strong expression of ICAM-1 was observed in placental villi in PE, significantly higher than that of normal placentas (p = 0.005). The findings of a decrease of PECAM-1 expression and an increase of ICAM-1 expression in preeclamptic placenta suggest the existence of functional roles of these adhesion molecules in the pathophysiology of PE, probably by contributing to the reduced trophoblast invasion and the increased vascular damage, respectively. Inhibiting ICAM-1 (i.e., with ICAM-1 monoclonal antibody) and promoting PECAM-1 expression may be good therapeutic approaches to prevent PE symptoms in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G.A. Dekker, H.P. van Geijn, Endothelial dysfunction in preeclampsia. I: primary prevention. Therapeutic perspectives. J. Perinat. Med. 24, 119–139 (1996)

    Article  PubMed  CAS  Google Scholar 

  2. I. Brosens, W.B. Robertson, H.G. Dixon, The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol. 93, 569–579 (1967)

    Article  PubMed  CAS  Google Scholar 

  3. R. Pijnenborg, J.M. Bland, W.B. Robertson, I. Brosens, Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 4, 397–413 (1983)

    Article  PubMed  CAS  Google Scholar 

  4. J. Nasiell, H. Nisell, A. Blanck, N.O. Lunell, M. Faxen, Placental expression of endothelial constitutive nitric oxide synthase mRNA in pregnancy complicated by preeclampsia. Acta Obstet. Gynecol. Scand. 77, 492–496 (1998)

    Article  PubMed  CAS  Google Scholar 

  5. A.T. Papageorghiou, C.K. Yu, R. Bindra, G. Pandis, K.H. Nicolaides, Fetal Medicine Foundation Second Trimester Screening Group. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet. Gynecol. 18, 441–449 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. A.T. Papageorghiou, C.K. Yu, S. Cicero, S. Bower, K.H. Nicolaides, Second-trimester uterine artery Doppler screening in unselected populations: a review. J. Matern. Fetal Neonatal Med. 12, 78–88 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. S. Di Paolo, P. Volpe, G. Grandaliano, G. Stallone, A. Schena, P. Greco et al., Increased placental expression of tissue factor is associated with abnormal uterine and umbilical Doppler waveforms in severe preeclampsia with fetal growth restriction. J. Nephrol. 16, 650–657 (2003)

    PubMed  Google Scholar 

  8. R. Pijnenborg, J. Anthony, D.A. Davey, A. Rees, A. Tiltman, L. Vercruysse et al., Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br. J. Obstet. Gynaecol. 98, 648–655 (1991)

    Article  PubMed  CAS  Google Scholar 

  9. L. Myatt, M. Miodovnik, Prediction of preeclampsia. Semin. Perinatol. 23, 45–57 (1999)

    Article  PubMed  CAS  Google Scholar 

  10. R.N. Sammour, F.M. Nakhoul, A.P. Levy, R. Miller-Lotan, N. Nakhoul, H.R. Awad et al., Haptoglobin phenotype in women with preeclampsia. Endocrine 38, 303–308 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. W.B. Robertson, I. Brosens, H.G. Dixon, The pathological response of the vessels of the placental bed to hypertensive pregnancy. J. Path. Bact. 93, 581–592 (1967)

    Article  PubMed  CAS  Google Scholar 

  12. I.A. Greer, Pathological processes in pregnancy-induced hypertention and intrauterine growth retardation: ‘‘an excess of heated blood’’, in Haemost Thromb Obstet Gynecol, ed. by I.A. Greer, A.G.G. Turpie, C.D. Forbes (Chapman and Hall, London, 1992), pp. 163–202

    Google Scholar 

  13. J.M. Harlan, Neutrophil-mediated vascular injury. Acta Med. Scand. Suppl. 715, 123–129 (1987)

    PubMed  CAS  Google Scholar 

  14. Y. Zhou, C.H. Damsky, K. Chiu, J. Roberts, S. Fisher, Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J. Clin. Invest. 91, 950–960 (1993)

    Article  PubMed  CAS  Google Scholar 

  15. P.B. Juliano, M.H. Blotta, A.M. Altemani, ICAM-1 is overexpressed by villous trophoblasts in placentitis. Placenta 27, 750–757 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. T.A. Springer, Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. A. Scheynius, R.L. Camp, E. Puré, Reduced contact sensitivity reactions in mice treated with monoclonal antibodies to leukocyte function-associated molecule-1 and intercellular adhesion molecule-1. J. Immunol. 150, 655–663 (1993)

    PubMed  CAS  Google Scholar 

  18. M.E. Anderson, T.J. Siahaan, Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides 24, 487–501 (2003)

    Article  PubMed  CAS  Google Scholar 

  19. B.J. Masten, J.L. Yates, A.M. Pollard Koga, M.F. Lipscomb, Characterization of accessory molecules in murine lung dendritic cell function: roles for CD80, CD86, CD54, and CD40L. Am. J. Respir. Cell Mol. Biol. 16, 335–342 (1997)

    PubMed  CAS  Google Scholar 

  20. P.J. Newman, M.C. Berndt, J. Gorski, G.C. White 2nd, S. Lyman, C. Paddock et al., PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247, 1219–1222 (1990)

    Article  PubMed  CAS  Google Scholar 

  21. P.J. Newman, The biology of PECAM-1. J. Clin. Invest. 99, 3–8 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. W.H. Sun, Y.L. Sun, R.N. Fang, Y. Shao, H.C. Xu, Q.P. Xue et al., Expression of cyclooxygenase-2 and matrix metalloproteinase-9 in gastric carcinoma and its correlation with angiogenesis. Jpn. J. Clin. Oncol. 35, 707–713 (2005)

    Article  PubMed  Google Scholar 

  23. C. Tokyol, F. Aktepe, F.H. Dilek, O. Sahin, D.T. Arioz, Expression of cyclooxygenase-2 and matrix metalloproteinase-2 in adenomyosis and endometrial polyps and its correlation with angiogenesis. Int. J. Gynecol. Pathol. 28, 148–156 (2009)

    Article  PubMed  Google Scholar 

  24. A.Y. Goksu Erol, M. Nazli, S. Elis Yildiz, Expression levels of cyclooxygenase-2, tumor necrosis factor-α and inducible NO synthase in placental tissue of normal and preeclamptic pregnancies. J. Matern. Fetal Neonatal Med. (2011). doi:10.3109/14767058.2011.595853

  25. E. Abe, K. Matsubara, K. Oka, Y. Kusanagi, M. Ito, Cytokine regulation of intercellular adhesion molecule-1 expression on trophoblasts in preeclampsia. Gynecol. Obstet. Invest. 66, 27–33 (2008)

    Article  PubMed  CAS  Google Scholar 

  26. J.R. Wilczyński, M. Banasik, H. Tchórzewski, E. Głowacka, A. Malinowski, M. Szpakowski et al., Expression of intercellular adhesion molecule-1 on the surface of peripheral blood and decidual lymphocytes of women with pregnancy-induced hypertension. Eur. J. Obstet. Gynecol. Reprod. Biol. 102, 15–20 (2002)

    Article  PubMed  Google Scholar 

  27. D. Aliefendioğlu, G. Erdem, N. Tülek, M. Yurdakök, Neonatal and maternal serum levels of soluble ICAM-1 in preeclamptic and normal pregnancies. Am. J. Perinatol. 19, 333–339 (2002)

    Article  PubMed  Google Scholar 

  28. S.Y. Kim, H.M. Ryu, J.H. Yang, M.Y. Kim, H.K. Ahn, H.J. Lim et al., Maternal serum levels of VCAM-1, ICAM-1 and E-selectin in preeclampsia. J. Korean Med. Sci. 19, 688–692 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. A. Szarka, J. Rigó Jr, L. Lázár, G. Beko, A. Molvarec, Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2(11), 59 (2010)

    Google Scholar 

  30. Z. Wang, H. Zou, Y. Yu, Y. Song, Monoclonal antibody to intercellular adhesion molecule-1 as a novel therapy for preeclampsia: preliminary results from a rat model. J. Matern. Fetal Neonatal Med. (2011). doi:10.3109/14767058.2011.599077

  31. J. Tziotis, A. Malamitsi-Puchner, G. Vlachos, G. Creatsas, S. Michalas, Adhesion molecules expression in the placental bed of pregnancies with pre-eclampsia. BJOG 109, 197–201 (2002)

    Article  PubMed  Google Scholar 

  32. K. Jaakkola, V. Jokimaa, M. Kallajoki, S. Jalkanen, E. Ekholm, Pre-eclampsia does not change the adhesion molecule status in the placental bed. Placenta 21, 133–141 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. F. Lyall, I.A. Greer, F. Boswell, A. Young, L.M. Macara, M.D. Jeffers, Expression of cell adhesion molecules in placentae from pregnancies complicated by pre-eclampsia and intrauterine growth retardation. Placenta 16, 579–587 (1995)

    Article  PubMed  CAS  Google Scholar 

  34. S.E. Maynard, J.Y. Min, J. Merchan, K.H. Lim, J. Li, S. Mondal et al., Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003)

    PubMed  CAS  Google Scholar 

  35. S. Venkatesha, M. Toporsian, C. Lam, J. Hanai, T. Mammoto, Y.M. Kim et al., Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. J.P. Granger, B.T. Alexander, M.T. Llinas, W.A. Bennett, R.A. Khalil, Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation 9, 147–160 (2002)

    PubMed  CAS  Google Scholar 

  37. Y. Zhou, M. McMaster, K. Woo, M. Janatpour, J. Perry, T. Karpanen et al., Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol. 160, 1405–1423 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. S. Helske, P. Vuorela, O. Carpen, C. Hornig, H. Weich, E. Halmesmaki, Expression of vascular endothelial growth factor receptors 1, 2, and 3 in placentas from normal and complicated pregnancies. Mol. Hum. Reprod. 7, 205–210 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. R. Thadhani, W.P. Mutter, M. Wolf, R.J. Levine, R.N. Taylor, V.P. Sukhatme et al., First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J. Clin. Endocrinol. Metab. 89, 770–775 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. L. Anton, D.C. Merrill, L.A. Neves, C. Gruver, C. Moorefield, K.B. Brosnihan, Angiotensin II and angiotensin-(1–7) decrease sFlt1 release in normal but not preeclamptic chorionic villi: an in vitro study. Reprod. Biol. Endocrinol. 4(8), 135 (2010)

    Google Scholar 

  41. F. Lyall, J.N. Bulmer, E. Duffie, F. Cousins, A. Theriault, S.C. Robson, Human trophoblast invasion and spiral artery transformation: the role of PECAM-1 in normal pregnancy, preeclampsia, and fetal growth restriction. Am. J. Pathol. 158, 1713–1721 (2001)

    Article  PubMed  CAS  Google Scholar 

  42. B. Sontia, R.M. Touyz, Role of magnesium in hypertension. Arch. Biochem. Biophys. 458, 33–39 (2007)

    Article  PubMed  CAS  Google Scholar 

  43. K. Skajaa, A. Forman, K.E. Andersson, Effects of magnesium on isolated human fetal and maternal uteroplacental vessels. Acta Physiol. Scand. 139, 551–559 (1990)

    Article  PubMed  CAS  Google Scholar 

  44. M. Cervar, D.M. Nelson, F. Kainer, G. Desoye, Drug actions in preeclampsia: aspirin, but not magnesium chloride or dihydralazine, differentially inhibits cultured human trophoblast release of thromboxane and prostacyclin without affecting angiotensin II, endothelin-1, or leukotriene B4 secretion. Am. J. Obstet. Gynecol. 176, 66–72 (1997)

    Article  PubMed  CAS  Google Scholar 

  45. A. Amash, A.Y. Weintraub, E. Sheiner, A. Zeadna, M. Huleihel, G. Holcberg, Possible therapeutic effect of magnesium sulfate in pre-eclampsia by the down-regulation of placental tumor necrosis factor-alpha secretion. Eur. Cytokine Netw. 21, 58–64 (2010)

    PubMed  CAS  Google Scholar 

  46. X. Xiong, N.N. Demianczuk, L.D. Saunders, F.L. Wang, W.D. Fraser, Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am. J. Epidemiol. 1(155), 203–209 (2002)

    Article  Google Scholar 

Download references

Conflict of interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azize Yasemin Goksu Erol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goksu Erol, A.Y., Nazli, M. & Elis Yildiz, S. Significance of platelet endothelial cell adhesion molecule-1 (PECAM-1) and intercellular adhesion molecule-1 (ICAM-1) expressions in preeclamptic placentae. Endocrine 42, 125–131 (2012). https://doi.org/10.1007/s12020-012-9644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9644-9

Keywords

Navigation