Skip to main content
Log in

Triiodothyronine stimulates glucose transport in bone cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thyroid hormones increase energy expenditure and bone turnover in vivo. To study whether 3,3′,5-triiodo-l-thyronine (T3) stimulates the uptake of glucose in osteoblastic cells, PyMS (a cell line derived from rat bone) cells were kept in serum-free culture medium and treated with T3. We measured [1-14C]-2-deoxy-d-glucose (2DG) uptake and looked for expression of the high-affinity glucose transporters GLUT1 and GLUT3 by northern and western analysis. T3 did not influence the cell number but slightly (1.3-fold) increased the protein content of the cell cultures. 2DG uptake was low in serum-deprived cell cultures and was increased by T3 (up to 2.5-fold at 1 nmol l−1 after 4 days) in a dose- and time-dependent manner. Triiodothyronine at 1 nmol l−1 increased GLUT1 and GLUT3 abundance in membranes. Therefore, increased glucose uptake induced by T3 in osteoblasts may be mediated by the known high-affinity glucose transporters GLUT1 and GLUT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.M. Thomas, F. Maher, S.D. Rogers, J.D. Best, Expression and regulation by insulin of GLUT3 in UMR 106–01, a clonal rat osteosarcoma cell line. Biochem. Biophys. Res. Commun. 218, 789–793 (1996)

    Article  PubMed  CAS  Google Scholar 

  2. E. Zoidis, C. Ghirlanda-Keller, C. Schmid, Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol. Cell. Biochem. 348, 33–42 (2011)

    Article  PubMed  CAS  Google Scholar 

  3. C. Schmid, J. Zapf, E.R. Froesch, Production of carrier proteins for insulin-like growth factors (IGFs) by rat osteoblastic cells. FEBS Lett. 244, 328–332 (1989)

    Article  PubMed  CAS  Google Scholar 

  4. C.M. Veldman, I. Schläpfer, C. Schmid, 1α,25-dihydroxyvitamin D3 stimulates sodium-dependent phosphate transport in osteoblast-like cells. Bone 21, 41–47 (1997)

    Article  PubMed  CAS  Google Scholar 

  5. C. Schmid, C. Keller, I. Schläpfer, C. Veldman, J. Zapf, Calcium and insulin-like growth factor I stimulation of sodium-dependent phosphate transport and proliferation of cultured rat osteoblasts. Biochem. Biophys. Res. Commun. 245, 220–225 (1998)

    Article  PubMed  CAS  Google Scholar 

  6. C. Schmid, C. Ghirlanda-Keller, M. Gosteli-Peter, Ascorbic acid decreases neutral endopeptidase activity in cultured osteoblastic cells. Regul. Pept. 130, 57–66 (2005)

    Article  PubMed  CAS  Google Scholar 

  7. C. Schmid, T. Steiner, E.R. Froesch, Insulin-like growth factors stimulate synthesis of nucleic acids and glycogen in cultured calvaria cells. Calcif. Tissue Int. 35, 578–585 (1983)

    Article  PubMed  CAS  Google Scholar 

  8. E.R. Froesch, C. Schmid, J. Schwander, J. Zapf, Actions of insulin-like growth factors. Annu. Rev. Physiol. 47, 443–467 (1985)

    Article  PubMed  CAS  Google Scholar 

  9. M. Ferron, J. Wei, T. Yoshizawa, A. Del Fattore, R.A. DePinho, A. Teti, P. Ducy, G. Karsenty, Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010)

    Article  PubMed  CAS  Google Scholar 

  10. K. Fulzele, R.C. Riddle, D.J. DiGirolamo, X. Cao, C. Wan, D. Chen, M.-C. Faugere, S. Aja, M.A. Hussain, J.C. Brüning, T.L. Clemens, Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. M. López, L. Varela, M.J. Vázquez, S. Rodríguez-Cuenca, C.R. González, V.R. Velagapudi, D.A. Morgan, E. Schoenmakers, K. Agassandian, R. Lage, P.B. Martínez de Morentin, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Oresic, K. Chatterjee, A.K. Saha, K. Rahmouni, C. Diéguez, A. Vidal-Puig, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010)

    Article  PubMed  Google Scholar 

  12. J.E. Silva, P.R. Larsen, Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature 305, 712–713 (1983)

    Article  PubMed  CAS  Google Scholar 

  13. J.E. Silva, P.R. Larsen, Potential of brown adipose tissue type II thyroxine 5′-deiodinase as a local and systemic source of triiodothyronine in rats. J. Clin. Invest. 76, 2296–2305 (1985)

    Article  PubMed  CAS  Google Scholar 

  14. S.P. Weinstein, J. Watts, P.N. Graves, R.S. Haber, Stimulation of glucose transport by thyroid hormone in ARL 15 cells: increased abundance of glucose transporter protein and messenger ribonucleic acid. Endocrinology 126, 1421–1429 (1990)

    Article  PubMed  CAS  Google Scholar 

  15. M.A. Gosteli-Peter, C. Schmid, J. Zapf, Triiodothyronine increases glucose transporter isotype 4 mRNA expression, glucose transport, and glycogen synthesis in adult rat cardiomyocytes in long-term culture. Biochem. Biophys. Res. Commun. 221, 521–524 (1996)

    Article  PubMed  CAS  Google Scholar 

  16. R. Romero, B. Casanova, N. Pulido, A.I. Suarez, E. Rodriguez, A. Rovira, Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes: increased abundance of GLUT1 and GLUT4 glucose transporter proteins. J. Endocrinol. 164, 187–195 (2000)

    Article  PubMed  CAS  Google Scholar 

  17. C.H.A. Gouveia, M.A. Christoffolete, C.R. Zaitune, J.M. Dora, J.W. Harney, A.L. Maia, A.C. Bianco, Type 2 iodothyronine selenodeiodinase is expressed throughout the mouse skeleton and in the MC3T3-E1 mouse osteoblastic cell line during differentiation. Endocrinology 146, 195–200 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. J.H.D. Bassett, G.R. Williams, The skeletal phenotypes of TR and TRβ mutant mice. J. Mol. Endocrinol. 42, 269–282 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. J.H.D. Bassett, A. Boyde, P.G.T. Howell, R.H. Bassett, T.M. Galliford, M. Archanco, H. Evans, M.A. Lawson, P. Croucher, D.L. St. Germain, V.A. Galton, G.R. Williams, Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc. Nat. Acad. Sci 107, 7604–7609 (2010)

    Article  PubMed  CAS  Google Scholar 

  20. A.I. Gogakos, J.H.D. Bassett, G.R. Williams, Thyroid and bone. Arch. Biochem. Biophys. 503, 129–136 (2010)

    Article  PubMed  CAS  Google Scholar 

  21. A. Fraichard, O. Chassande, M. Plateroti, J.P. Roux, J. Trouillas, C. Dehay, C. Legrand, K. Gauthier, M. Kedinger, L. Malaval, B. Rousset, J. Samarut, The T3Ra gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J. 16, 4412–4420 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. S.M. Krane, G.L. Brownell, J.B. Stanbury, H. Corrigan, The effect of thyroid disease on calcium metabolism in man. J. Clin. Invest. 35, 874–887 (1956)

    Article  PubMed  CAS  Google Scholar 

  23. P. Charles, J.W. Poser, L. Mosekilde, F.T. Jensen, Estimation of bone turnover evaluated by 47calcium-kinetics: efficiency of serum bone gamma-carboxyglutamic acid-containing protein, serum alkaline phosphatase and urinary hydroxyproline excretion. J. Clin. Invest. 76, 2254–2258 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. C.B. Confavreux, R.L. Levine, G. Karsenty, A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol. Cell. Endocrinol. 310, 21–29 (2009)

    Article  PubMed  CAS  Google Scholar 

  25. W.S. Simonides, M.A. Mulcahey, E.M. Redout, A. Muller, M.J. Zuidwijk, T.J. Visser, F.W. Wassen, A. Crescenzi, W.S. da-Silva, J. Harney, F.B. Engel, M.J. Obregon, P.R. Larsen, A.C. Bianco, S.A. Huang, Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J. Clin. Invest. 118, 975–983 (2008)

    PubMed  CAS  Google Scholar 

  26. A. Lanni, M. Moreno, A. Lombardi, F. Goglia, Thyroid hormones and uncoupling proteins. FEBS Lett. 543, 5–10 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. E. Zoidis, C. Ghirlanda-Keller, M. Gosteli-Peter, J. Zapf, C. Schmid, Regulation of phosphate (Pi) transport and NaPi-III transporter (Pit-1) mRNA in rat osteoblasts. J. Endocrinol. 181, 531–540 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. C. Schmid, I. Schlapfer, M. Peter, M. Boni-Schnetzler, J. Schwander, J. Zapf, E.R. Froesch, Growth hormone and parathyroid hormone stimulate IGFBP-3 in rat osteoblasts. Am. J. Physiol. 267, 226–233 (1994)

    Google Scholar 

  29. Zorzano, A., Palacín, M., Gumà, A.: Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol. Scand. 183, 43–58 (2005)

    Google Scholar 

  30. V. Lebon, S. Dufour, K.F. Petersen, J. Ren, B.M. Jucker, L.A. Slezak, G.W. Cline, D.L. Rothman, G.I. Shulman, Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J. Clin. Invest. 108, 733–737 (2001)

    PubMed  CAS  Google Scholar 

  31. K. Clement, N. Viguerie, M. Diehn, A. Alizadeh, P. Barbe, C. Thalamas, J.D. Storey, P.O. Brown, G.S. Barsh, D. Langin, In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Res. 12, 281–291 (2002)

    Article  PubMed  CAS  Google Scholar 

  32. W.E. Visser, K.A. Heemstra, S.M. Swagemakers, Z. Ozgür, E.P. Corssmit, J. Burggraaf, W.F. van Ijcken, P.J. van der Spek, J.W. Smit, T.J. Visser, Physiological thyroid hormone levels regulate numerous skeletal muscle transcripts. J. Clin. Endocrinol. Metab. 94, 3487–3496 (2009)

    Article  PubMed  CAS  Google Scholar 

  33. P. De Lange, R. Senese, F. Cioffi, M. Moreno, A. Lombardi, E. Silvestri, F. Goglia, A. Lanni, Rapid activation by 3,5,3′-L-triiodothyronine of adenosine 5′-monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase and Akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo. Endocrinology 149, 6462–6470 (2008)

    Article  PubMed  Google Scholar 

  34. G.I. Bell, C.F. Burant, J. Takeda, G.W. Gould, Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268, 19161–19164 (1993)

    PubMed  CAS  Google Scholar 

  35. Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., Vannucci, S.J.: (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. 295, E242–E253 (2008)

    Google Scholar 

  36. B.L. Ebert, J.D. Firth, P.J. Ratcliffe, Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J. Biol. Chem. 270, 29083–29089 (1995)

    Article  PubMed  CAS  Google Scholar 

  37. D.H. Lee, M.Y. Chung, J.U. Lee, D.G. Kang, J.W. Paek, Changes of glucose transporters in the cerebral adaptation to hypoglycaemia. Diabetes Res. Clin. Pract. 47, 15–23 (2000)

    Article  PubMed  CAS  Google Scholar 

  38. P. Cidad, P. Garcia-Nogales, A. Almeida, J.P. Bolanos, Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: the role of nitric oxide. J. Neurochem. 79, 17–24 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. M.H. Maurer, H.K. Geomor, H.F. Bürgers, D.W. Schelshorn, W. Kuschinsky, Adult neural stem cells express glucose transporters GLUT1 and GLUT3 and regulate GLUT3 expression. FEBS Lett. 580, 4430–4434 (2006)

    Article  PubMed  CAS  Google Scholar 

  40. Z.A. Khayat, A. McCall, A. Klip, Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life. Biochem. J. 333, 713–718 (1998)

    PubMed  CAS  Google Scholar 

  41. Xiao, H., Massaro, D., DeCarlo Massaro, G., Biadasz Clerch, L.: Expression of lung uncoupling protein-2 mRNA is modulated developmentally and by caloric intake. Exp. Biol. Med. 229, 479–485 (2004)

    Google Scholar 

  42. C. Cohade, M. Osman, H.K. Pannu, R.L. Wahl, Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J. Nucl. Med. 44, 170–176 (2003)

    PubMed  CAS  Google Scholar 

  43. J.E. Silva, Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 86, 435–464 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. J.R. Clarke, S. Brglevska, E.W. Lau, S. Ramdave, R.J. Hicks, A typical brown fat distribution in young males demonstrated on PET/CT. Clin. Nucl. Med. 32, 679–682 (2007)

    Article  PubMed  Google Scholar 

  45. A.M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman, A.B. Goldfine, F.C. Kuo, E.L. Palmer, Y.H. Tseng, A. Doria, G.M. Kolodny, C.R. Kahn, Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. W.D. van Marken Lichtenbelt, J.W. Vanhommerig, N.M. Smulders, J.M. Drossaerts, G.J. Kemerink, N.D. Bouvy, P. Schrauwen, G.J.J. Teule, Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009)

    Article  PubMed  Google Scholar 

  47. K.A. Virtanen, M.E. Lidell, J. Orava, M. Heglind, R. Westergren, T. Niemi, M. Taittonen, J. Laine, N.J. Savisto, S. Enerbäck, P. Nuutila, Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009)

    Article  PubMed  CAS  Google Scholar 

  48. W.E. Visser, E.C.H. Friesema, T.J. Visser, Transport of thyroxine and 3,3′,5-triiodothyronine in human umbilical vein endothelial cells. Endocrinology 150, 1552–1557 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. M.C. Skarulis, F.S. Celi, E. Mueller, M. Zemskova, R. Malek, L. Hugendubler, C. Cochran, J. Solomon, C. Chen, P. Gorden, Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab. 95, 256–262 (2010)

    Article  PubMed  CAS  Google Scholar 

  50. C. Schmid, T. Steiner, E.R. Froesch, Triiodothyronine increases responsiveness of cultured rat bone cells to parathyroid hormone. Acta Endocrinol. 111, 213–216 (1986)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martina Gosteli for advice with the preparation of the GLUT cDNA probes, Oliver Tschopp for help with the statistical analysis, and Michèle Rothfuchs for help with the preparation of the manuscript. This work has been supported by the Swiss National Science Foundation (grant 32-46808.96).

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Zoidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoidis, E., Ghirlanda-Keller, C. & Schmid, C. Triiodothyronine stimulates glucose transport in bone cells. Endocrine 41, 501–511 (2012). https://doi.org/10.1007/s12020-012-9594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9594-2

Keywords

Navigation