Skip to main content

Advertisement

Log in

Dysregulation of glucose metabolism in HIV patients: epidemiology, mechanisms, and management

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

HIV-infected patients on highly active antiretroviral therapy (HAART) have increased prevalence of a number of chronic metabolic disorders of multifactorial but unclear etiology. These include disorders of lipid metabolism with or without lipodystrophy, insulin resistance, and an increased prevalence of impaired glucose tolerance, diabetes mellitus, and cardiometabolic syndrome. While much attention has been focused on the lipid and cardiovascular disorders, few investigations have attempted to characterize the prevalence, incidence, etiology, mechanisms, and management of glycemic disorders in HIV patients. In this review, we have focused specifically on a comprehensive assessment of dysglycemia in the context of HIV infection and HAART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.J. Paik, D.P. Kotler, The prevalence and pathogenesis of diabetes mellitus in treated HIV-infection. Best Pract. Res. Clin. Endocrinol. Metab. 25, 469–478 (2011)

    Article  PubMed  Google Scholar 

  2. W.M. El-Sadr et al., Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV Med. 6, 114–121 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. F. Visnegarwala, L. Chen, S. Raghavan, E. Tedaldi, Prevalence of diabetes mellitus and dyslipidemia among antiretroviral naive patients co-infected with hepatitis C virus (HCV) and HIV-1 compared to patients without co-infection. J. Infect. 50, 331–337 (2005)

    Article  PubMed  Google Scholar 

  4. P.C. Tien et al., Antiretroviral therapy exposure and incidence of diabetes mellitus in the Women’s Interagency HIV Study. AIDS 21, 1739–1745 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. C. Hadigan et al., Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin. Infect. Dis. 32, 130–139 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. T.T. Brown et al., Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 165, 1179–1184 (2005)

    Article  PubMed  Google Scholar 

  7. M. Beregszaszi et al., Longitudinal evaluation and risk factors of lipodystrophy and associated metabolic changes in HIV-infected children. J. Acquir. Immune Defic. Syndr. 40, 161–168 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. R. Palacios et al., Incidence of and risk factors for insulin resistance in treatment-naive HIV-infected patients 48 weeks after starting highly active antiretroviral therapy. Antivir. Ther. 11, 529–535 (2006)

    PubMed  CAS  Google Scholar 

  9. S. De Wit et al., Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care 31, 1224–1229 (2008)

    Article  PubMed  Google Scholar 

  10. V. Estrada et al., Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism 55, 940–945 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. C. Jerico et al., Metabolic syndrome among HIV-infected patients: prevalence, characteristics, and related factors. Diabetes Care 28, 132–137 (2005)

    Article  PubMed  Google Scholar 

  12. M.E. Sobieszczyk et al., Prevalence and predictors of metabolic syndrome among HIV-infected and HIV-uninfected women in the Women’s Interagency HIV Study. J. Acquir. Immune Defic. Syndr. 48, 272–280 (2008)

    Article  PubMed  CAS  Google Scholar 

  13. K. Samaras et al., Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reactive protein, and [corrected] hypoadiponectinemia. Diabetes Care 30, 113–119 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. K. Mondy et al., Metabolic syndrome in HIV-infected patients from an urban, midwestern US outpatient population. Clin. Infect. Dis. 44, 726–734 (2007)

    Article  PubMed  Google Scholar 

  15. C. Gazzaruso et al., Hypertension among HIV patients: prevalence and relationships to insulin resistance and metabolic syndrome. J. Hypertens. 21, 1377–1382 (2003)

    Article  PubMed  CAS  Google Scholar 

  16. G. Meininger et al., Elevated concentrations of free fatty acids are associated with increased insulin response to standard glucose challenge in human immunodeficiency virus-infected subjects with fat redistribution. Metabolism 51, 260–266 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. C. Hadigan et al., Fasting hyperinsulinemia and changes in regional body composition in human immunodeficiency virus-infected women. J. Clin. Endocrinol. Metab. 84, 1932–1937 (1999)

    Article  PubMed  CAS  Google Scholar 

  18. A.A. Howard et al., Abnormal glucose metabolism among older men with or at risk of HIV infection. HIV Med. 7, 389–396 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. S.H. Mehta, R.D. Moore, D.L. Thomas, R.E. Chaisson, M.S. Sulkowski, The effect of HAART and HCV infection on the development of hyperglycemia among HIV-infected persons. J. Acquir. Immune Defic. Syndr. 33, 577–584 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. M.J. Glesby et al., Glycated haemoglobin in diabetic women with and without HIV infection: data from the Women’s Interagency HIV Study. Antivir. Ther. 15, 571–577 (2010)

    Article  PubMed  CAS  Google Scholar 

  21. F.A. Ramirez-Marrero et al., Prevalence of cardiometabolic risk factors in Hispanics living with HIV. Ethn. Dis. 20, 423–428 (2010)

    PubMed  Google Scholar 

  22. S.L. Samson et al., Heart positive: design of a randomized controlled clinical trial of intensive lifestyle intervention, niacin and fenofibrate for HIV lipodystrophy/dyslipidemia. Contemp. Clin. Trials 27, 518–530 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. A. Balasubramanyam et al., Combination of niacin and fenofibrate with lifestyle changes improves dyslipidemia and hypoadiponectinemia in HIV patients on antiretroviral therapy: results of “heart positive,” a randomized, controlled trial. J. Clin. Endocrinol. Metab. 96, 2236–2247 (2011)

    Article  PubMed  CAS  Google Scholar 

  24. M. Mary-Krause et al., Increased risk of myocardial infarction with duration of protease inhibitor therapy in HIV-infected men. AIDS 17, 2479–2486 (2003)

    Article  PubMed  Google Scholar 

  25. N. Friis-Moller et al., Combination antiretroviral therapy and the risk of myocardial infarction. N. Engl. J. Med. 349, 1993–2003 (2003)

    Article  PubMed  Google Scholar 

  26. V.A. Triant, H. Lee, C. Hadigan, S.K. Grinspoon, Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J. Clin. Endocrinol. Metab. 92, 2506–2512 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. S.W. Worm et al., Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. J. Infect. Dis. 201, 318–330 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. F. Magkos, C.S. Mantzoros, Body fat redistribution and metabolic abnormalities in HIV-infected patients on highly active antiretroviral therapy: novel insights into pathophysiology and emerging opportunities for treatment. Metabolism 60, 749–753 (2011)

    Article  PubMed  CAS  Google Scholar 

  29. E.Y. Chan et al., Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J. Virol. 81, 7571–7583 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. S. Rasheed, J.S. Yan, A. Lau, A.S. Chan, HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One 3, e3003 (2008)

    Article  PubMed  CAS  Google Scholar 

  31. G. Aragones et al., Infection with HIV and HCV enhances the release of fatty acid synthase into circulation: evidence for a novel indicator of viral infection. BMC Gastroenterol. 10, 92 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. C. Grunfeld et al., Circulating interferon-alpha levels and hypertriglyceridemia in the acquired immunodeficiency syndrome. Am. J. Med. 90, 154–162 (1991)

    PubMed  CAS  Google Scholar 

  33. C. Grunfeld et al., Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 74, 1045–1052 (1992)

    Article  PubMed  CAS  Google Scholar 

  34. S. Das et al., In treatment-naive and antiretroviral-treated subjects with HIV, reduced plasma adiponectin is associated with a reduced fractional clearance rate of VLDL, IDL and LDL apolipoprotein B-100. Diabetologia 49, 538–542 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. R.V. Sekhar et al., Metabolic basis of HIV-lipodystrophy syndrome. Am. J. Physiol. Endocrinol. Metab. 283, E332–E337 (2002)

    PubMed  CAS  Google Scholar 

  36. P. Limone et al., Insulin resistance in HIV-infected patients: relationship with pro-inflammatory cytokines released by peripheral leukocytes. J. Infect. 47, 52–58 (2003)

    Article  PubMed  Google Scholar 

  37. S. Shrivastav et al., Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor gamma and inhibits adipocyte differentiation: implications for HIV-associated lipodystrophy. Mol. Endocrinol. 22, 234–247 (2008)

    Article  PubMed  CAS  Google Scholar 

  38. T. Kino, M. Mirani, S. Alesci, G.P. Chrousos, AIDS-related lipodystrophy/insulin resistance syndrome. Horm. Metab. Res. 35, 129–136 (2003)

    Article  PubMed  CAS  Google Scholar 

  39. P. Koutkia, K. Eaton, S.M. You, J. Breu, S. Grinspoon, Growth hormone secretion among HIV infected patients: effects of gender, race and fat distribution. AIDS 20, 855–862 (2006)

    Article  PubMed  CAS  Google Scholar 

  40. C. Grady, M. Ropka, R. Anderson, H.C. Lane, Body composition in clinically stable men with HIV infection. J. Assoc. Nurses AIDS Care 7, 29–38 (1996)

    Article  PubMed  CAS  Google Scholar 

  41. V. Soriano et al., Antiretroviral drugs and liver injury. AIDS 22, 1–13 (2008)

    Article  PubMed  Google Scholar 

  42. D.A. Wohl et al., Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin. Infect. Dis. 43, 645–653 (2006)

    Article  PubMed  CAS  Google Scholar 

  43. J.S. Currier, D.V. Havlir, Complications of HIV disease and antiretroviral therapy. Highlights of the 11th Conference on Retroviruses and Opportunistic Infections, February 8–11, 2004, San Francisco, California, USA. Top. HIV Med. 12, 31–45 (2004)

    PubMed  Google Scholar 

  44. R.V. Sekhar et al., Severely dysregulated disposal of postprandial triacylglycerols exacerbates hypertriacylglycerolemia in HIV lipodystrophy syndrome. Am. J. Clin. Nutr. 81, 1405–1410 (2005)

    PubMed  CAS  Google Scholar 

  45. S.K. Gan et al., Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes 51, 3163–3169 (2002)

    Article  PubMed  CAS  Google Scholar 

  46. G.M. Behrens et al., Impaired glucose phosphorylation and transport in skeletal muscle cause insulin resistance in HIV-1-infected patients with lipodystrophy. J. Clin. Invest. 110, 1319–1327 (2002)

    PubMed  CAS  Google Scholar 

  47. J. Sutinen et al., Increased fat accumulation in the liver in HIV-infected patients with antiretroviral therapy-associated lipodystrophy. AIDS 16, 2183–2193 (2002)

    Article  PubMed  CAS  Google Scholar 

  48. S.B. Haugaard et al., Insulin secretion in lipodystrophic HIV-infected patients is associated with high levels of nonglucose secretagogues and insulin resistance of beta-cells. Am. J. Physiol. Endocrinol. Metab. 287, E677–E685 (2004)

    Article  PubMed  CAS  Google Scholar 

  49. T.T. Brown, K. Tassiopoulos, R.J. Bosch, C. Shikuma, G.A. McComsey, Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care 33, 2244–2249 (2010)

    Article  PubMed  Google Scholar 

  50. G.F. de Larranaga, S.D. Wingeyer, L.M. Puga, B.S. Alonso, J.A. Benetucci, Relationship between hepatitis C virus (HCV) and insulin resistance, endothelial perturbation, and platelet activation in HIV-HCV-coinfected patients under highly active antiretroviral treatment. Eur. J. Clin. Microbiol. Infect. Dis. 25, 98–103 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. M. Duong et al., Association between insulin resistance and hepatitis C virus chronic infection in HIV-hepatitis C virus-coinfected patients undergoing antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 27, 245–250 (2001)

    Article  PubMed  CAS  Google Scholar 

  52. A. Balasubramanyam, R.V. Sekhar, HIV-associated lipodystrophy syndrome: an accelerated form of the metabolic syndrome of insulin resistance due to altered fat distribution. Res. Initiat. Treat. Action 12, 5–11 (2006)

    PubMed  Google Scholar 

  53. C. Hadigan, J. Liebau, M. Torriani, R. Andersen, S. Grinspoon, Improved triglycerides and insulin sensitivity with 3 months of acipimox in human immunodeficiency virus-infected patients with hypertriglyceridemia. J. Clin. Endocrinol. Metab. 91, 4438–4444 (2006)

    Article  PubMed  CAS  Google Scholar 

  54. B.H. McGovern et al., Hepatic steatosis is associated with fibrosis, nucleoside analogue use, and hepatitis C virus genotype 3 infection in HIV-seropositive patients. Clin. Infect. Dis. 43, 365–372 (2006)

    Article  PubMed  CAS  Google Scholar 

  55. M.S. Sulkowski et al., Hepatic steatosis and antiretroviral drug use among adults coinfected with HIV and hepatitis C virus. AIDS 19, 585–592 (2005)

    Article  PubMed  Google Scholar 

  56. N. Crum-Cianflone et al., Nonalcoholic fatty liver disease among HIV-infected persons. J. Acquir. Immune Defic. Syndr. 50, 464–473 (2009)

    Article  PubMed  Google Scholar 

  57. G.C. Farrell, C.Z. Larter, Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43, S99–S112 (2006)

    Article  PubMed  CAS  Google Scholar 

  58. A.E. Ogedegbe, D.L. Thomas, A.M. Diehl, Hyperlactataemia syndromes associated with HIV therapy. Lancet Infect. Dis. 3, 329–337 (2003)

    Article  PubMed  CAS  Google Scholar 

  59. N. Stefan, H.U. Haring, The metabolically benign and malignant fatty liver. Diabetes 60, 2011–2017 (2011)

    Article  PubMed  CAS  Google Scholar 

  60. J.M. Schwarz et al., Effects of recombinant human growth hormone on hepatic lipid and carbohydrate metabolism in HIV-infected patients with fat accumulation. J. Clin. Endocrinol. Metab. 87, 942 (2002)

    Article  PubMed  CAS  Google Scholar 

  61. S. D’Amico et al., Physiologic growth hormone replacement improves fasting lipid kinetics in patients with HIV lipodystrophy syndrome. Am. J. Clin. Nutr. 84, 204–211 (2006)

    PubMed  Google Scholar 

  62. J.C. Lo et al., The effects of recombinant human growth hormone on body composition and glucose metabolism in HIV-infected patients with fat accumulation. J. Clin. Endocrinol. Metab. 86, 3480–3487 (2001)

    Article  PubMed  CAS  Google Scholar 

  63. D.P. Kotler et al., Effects of growth hormone on abnormal visceral adipose tissue accumulation and dyslipidemia in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 35, 239–252 (2004)

    Article  PubMed  CAS  Google Scholar 

  64. P. Koutkia, B. Canavan, J. Breu, S. Grinspoon, Effects of growth hormone-releasing hormone on bone turnover in human immunodeficiency virus-infected men with fat accumulation. J. Clin. Endocrinol. Metab. 90, 2154–2160 (2005)

    Article  PubMed  CAS  Google Scholar 

  65. M.N. Rao et al., Effects of insulin-like growth factor (IGF)-I/IGF-binding protein-3 treatment on glucose metabolism and fat distribution in human immunodeficiency virus-infected patients with abdominal obesity and insulin resistance. J. Clin. Endocrinol. Metab. 95, 4361–4366 (2010)

    Article  PubMed  CAS  Google Scholar 

  66. K.A. Lichtenstein et al., Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS 15, 1389–1398 (2001)

    Article  PubMed  CAS  Google Scholar 

  67. N. Gianotti et al., Detecting impaired glucose tolerance or type 2 diabetes mellitus by means of an oral glucose tolerance test in HIV-infected patients. HIV Med. 12, 109–117 (2011)

    Article  PubMed  CAS  Google Scholar 

  68. A. Balasubramanyam, R.V. Sekhar, F. Jahoor, P.H. Jones, H.J. Pownall, Pathophysiology of dyslipidemia and increased cardiovascular risk in HIV lipodystrophy: a model of ‘systemic steatosis’. Curr. Opin. Lipidol. 15, 59–67 (2004)

    Article  PubMed  CAS  Google Scholar 

  69. J.M. Lenhard et al., HIV protease inhibitors block adipogenesis and increase lipolysis in vitro. Antivir. Res. 47, 121–129 (2000)

    Article  PubMed  CAS  Google Scholar 

  70. A.R. Miserez, P.Y. Muller, V. Spaniol, Indinavir inhibits sterol-regulatory element-binding protein-1c-dependent lipoprotein lipase and fatty acid synthase gene activations. AIDS 16, 1587–1594 (2002)

    Article  PubMed  CAS  Google Scholar 

  71. D. Nolan, M. John, S. Mallal, Antiretoviral therapy and the lipodystrophy syndrome, part 2: concepts in aetiopathogenesis. Antivir. Ther. 6, 145–160 (2001)

    PubMed  CAS  Google Scholar 

  72. S. Tsiodras, A. Perelas, C. Wanke, C.S. Mantzoros, The HIV-1/HAART associated metabolic syndrome—novel adipokines, molecular associations and therapeutic implications. J. Infect. 61, 101–113 (2010)

    Article  PubMed  CAS  Google Scholar 

  73. G.S. Nagy et al., Human immunodeficiency virus type 1-related lipoatrophy and lipohypertrophy are associated with serum concentrations of leptin. Clin. Infect. Dis. 36, 795–802 (2003)

    Article  PubMed  CAS  Google Scholar 

  74. J.L. Chan, K. Heist, A.M. DePaoli, J.D. Veldhuis, C.S. Mantzoros, The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 111, 1409–1421 (2003)

    PubMed  CAS  Google Scholar 

  75. J.H. Lee, J.L. Chan, E. Sourlas, V. Raptopoulos, C.S. Mantzoros, Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J. Clin. Endocrinol. Metab. 91, 2605–2611 (2006)

    Article  PubMed  CAS  Google Scholar 

  76. K. Mulligan et al., The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J. Clin. Endocrinol. Metab. 94, 1137–1144 (2009)

    Article  PubMed  CAS  Google Scholar 

  77. T. Yamauchi et al., Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)

    Article  PubMed  CAS  Google Scholar 

  78. T. Yamauchi et al., Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)

    Article  PubMed  CAS  Google Scholar 

  79. M. Iwaki et al., Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52, 1655–1663 (2003)

    Article  PubMed  CAS  Google Scholar 

  80. L. Kosmiski, D. Kuritzkes, K. Lichtenstein, R. Eckel, Adipocyte-derived hormone levels in HIV lipodystrophy. Antivir. Ther. 8, 9–15 (2003)

    PubMed  CAS  Google Scholar 

  81. K. Falasca et al., Associations between hypertriglyceridemia and serum ghrelin, adiponectin, and IL-18 levels in HIV-infected patients. Ann. Clin. Lab. Sci. 36, 59–66 (2006)

    PubMed  CAS  Google Scholar 

  82. C. Vernochet et al., Human immunodeficiency virus protease inhibitors accumulate into cultured human adipocytes and alter expression of adipocytokines. J. Biol. Chem. 280, 2238–2243 (2005)

    Article  PubMed  CAS  Google Scholar 

  83. C.L. Addy et al., Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J. Clin. Endocrinol. Metab. 88, 627–636 (2003)

    Article  PubMed  CAS  Google Scholar 

  84. R. Verkauskiene et al., Serum adiponectin and leptin concentrations in HIV-infected children with fat redistribution syndrome. Pediatr. Res. 60, 225–230 (2006)

    Article  PubMed  CAS  Google Scholar 

  85. P.W. Hruz, Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract. Res. Clin. Endocrinol. Metab. 25, 459–468 (2011)

    Article  PubMed  CAS  Google Scholar 

  86. W. Lewis, B.J. Day, W.C. Copeland, Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat. Rev. Drug Discov. 2, 812–822 (2003)

    Article  PubMed  CAS  Google Scholar 

  87. C.M. Shikuma, L.J. Day, M. Gerschenson, Insulin resistance in the HIV-infected population: the potential role of mitochondrial dysfunction. Curr. Drug Targets Infect. Disord. 5, 255–262 (2005)

    Article  PubMed  CAS  Google Scholar 

  88. M. Gerschenson, K. Brinkman, Mitochondrial dysfunction in AIDS and its treatment. Mitochondrion 4, 763–777 (2004)

    Article  PubMed  CAS  Google Scholar 

  89. H. Murata, P.W. Hruz, M. Mueckler, The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J. Biol. Chem. 275, 20251–20254 (2000)

    Article  PubMed  CAS  Google Scholar 

  90. H. Murata, P.W. Hruz, M. Mueckler, Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS 16, 859–863 (2002)

    Article  PubMed  CAS  Google Scholar 

  91. M.A. Noor et al., Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS 15, F11–F18 (2001)

    Article  PubMed  CAS  Google Scholar 

  92. M.A. Noor et al., Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS 16, F1–F8 (2002)

    Article  PubMed  Google Scholar 

  93. A. Carr, K. Samaras, D.J. Chisholm, D.A. Cooper, Abnormal fat distribution and use of protease inhibitors. Lancet 351, 1736 (1998)

    Article  PubMed  CAS  Google Scholar 

  94. A.K. Vyas, J.C. Koster, A. Tzekov, P.W. Hruz, Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J. Biol. Chem. 285, 36395–36400 (2010)

    Article  PubMed  CAS  Google Scholar 

  95. J.C. Koster, M.S. Remedi, H. Qiu, C.G. Nichols, P.W. Hruz, HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes 52, 1695–1700 (2003)

    Article  PubMed  CAS  Google Scholar 

  96. M.A. Noor, O.P. Flint, J.F. Maa, R.A. Parker, Effects of atazanavir/ritonavir and lopinavir/ritonavir on glucose uptake and insulin sensitivity: demonstrable differences in vitro and clinically. AIDS 20, 1813–1821 (2006)

    Article  PubMed  CAS  Google Scholar 

  97. P.W. Hruz, Q. Yan, Tipranavir without ritonavir does not acutely induce peripheral insulin resistance in a rodent model. J. Acquir. Immune Defic. Syndr. 43, 624–625 (2006)

    Article  PubMed  Google Scholar 

  98. J.A. Aberg et al., Primary care guidelines for the management of persons infected with human immunodeficiency virus: 2009 update by the HIV medicine Association of the Infectious Diseases Society of America. Clin. Infect. Dis. 49, 651–681 (2009)

    Article  PubMed  Google Scholar 

  99. M. Schambelan et al., Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel. J. Acquir. Immune Defic. Syndr. 31, 257–275 (2002)

    Article  PubMed  Google Scholar 

  100. D.M. Nathan et al., Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32, 193–203 (2009)

    Article  PubMed  CAS  Google Scholar 

  101. International Expert Committee, International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009)

    Article  CAS  Google Scholar 

  102. P.S. Kim et al., A1C underestimates glycemia in HIV infection. Diabetes Care 32, 1591–1593 (2009)

    Article  PubMed  CAS  Google Scholar 

  103. S.W. Worm et al., Diabetes mellitus, preexisting coronary heart disease, and the risk of subsequent coronary heart disease events in patients infected with human immunodeficiency virus: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D Study). Circulation 119, 805–811 (2009)

    Article  PubMed  Google Scholar 

  104. A. Carr et al., Abacavir substitution for nucleoside analogs in patients with HIV lipoatrophy: a randomized trial. JAMA 288, 207–215 (2002)

    Article  PubMed  CAS  Google Scholar 

  105. A. Martin et al., Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS 18, 1029–1036 (2004)

    Article  PubMed  CAS  Google Scholar 

  106. G.A. McComsey et al., Improvement in lipoatrophy associated with highly active antiretroviral therapy in human immunodeficiency virus-infected patients switched from stavudine to abacavir or zidovudine: the results of the TARHEEL study. Clin. Infect. Dis. 38, 263–270 (2004)

    Article  PubMed  CAS  Google Scholar 

  107. A. Gavrila et al., Exercise and vitamin E intake are independently associated with metabolic abnormalities in human immunodeficiency virus-positive subjects: a cross-sectional study. Clin. Infect. Dis. 36, 1593–1601 (2003)

    Article  PubMed  Google Scholar 

  108. K.E. Yarasheski et al., Resistance exercise training reduces hypertriglyceridemia in HIV-infected men treated with antiviral therapy. J. Appl. Physiol. 90, 133–138 (2001)

    PubMed  CAS  Google Scholar 

  109. K.V. Fitch et al., Effects of a lifestyle modification program in HIV-infected patients with the metabolic syndrome. AIDS 20, 1843–1850 (2006)

    Article  PubMed  CAS  Google Scholar 

  110. E.S. Engelson et al., Body composition and metabolic effects of a diet and exercise weight loss regimen on obese, HIV-infected women. Metabolism 55, 1327–1336 (2006)

    Article  PubMed  CAS  Google Scholar 

  111. J.B. Albu, C.M. Kim, E.S. Engelson et al., Effects of diet and exercise and/or rosiglitazone on body composition and glucose metabolism in HIV+ and HIV− subjects. Antivir. Ther. 13(Suppl. 4), A31 (2008)

    Google Scholar 

  112. T. Saint-Marc, J.L. Touraine, Effects of metformin on insulin resistance and central adiposity in patients receiving effective protease inhibitor therapy. AIDS 13, 1000–1002 (1999)

    Article  PubMed  CAS  Google Scholar 

  113. C. Hadigan et al., Increased PAI-1 and tPA antigen levels are reduced with metformin therapy in HIV-infected patients with fat redistribution and insulin resistance. J. Clin. Endocrinol. Metab. 86, 939–943 (2001)

    Article  PubMed  CAS  Google Scholar 

  114. Lactic Acidosis International Study Group, Risk factors for lactic acidosis and severe hyperlactataemia in HIV-1-infected adults exposed to antiretroviral therapy. AIDS 21, 2455–2464 (2007)

    Article  CAS  Google Scholar 

  115. L.T. Matthews et al., A risk-factor guided approach to reducing lactic acidosis and hyperlactatemia in patients on antiretroviral therapy. PLoS One 6, e18736 (2011)

    Article  PubMed  CAS  Google Scholar 

  116. C. Hadigan et al., Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann. Intern. Med. 140, 786–794 (2004)

    PubMed  CAS  Google Scholar 

  117. J. Sutinen et al., Rosiglitazone in the treatment of HAART-associated lipodystrophy—a randomized double-blind placebo-controlled study. Antivir. Ther. 8, 199–207 (2003)

    PubMed  CAS  Google Scholar 

  118. A. Carr et al., No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet 363, 429–438 (2004)

    Article  PubMed  CAS  Google Scholar 

  119. J. Sutinen, The effects of thiazolidinediones on metabolic complications and lipodystrophy in HIV-infected patients. PPAR Res. 2009, 373524 (2009)

    Article  PubMed  CAS  Google Scholar 

  120. S.E. Nissen, K. Wolski, Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007)

    Article  PubMed  CAS  Google Scholar 

  121. FDA Drug Safety Communication: Updated Risk Evaluation and Mitigation Strategy (REMS) to Restrict Access to Rosiglitazone-containing Medicines including Avandia, Avandamet, and Avandaryl. http://www.fda.gov/Drugs/DrugSafety/ucm255005.htm (2011). Accessed 4 November 2011

  122. A.M. Lincoff, K. Wolski, S.J. Nicholls, S.E. Nissen, Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298, 1180–1188 (2007)

    Article  PubMed  CAS  Google Scholar 

  123. S.H. Sheth, R.J. Larson, The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a meta-analysis of randomized trials. BMC Infect. Dis. 10, 183 (2010)

    Article  PubMed  CAS  Google Scholar 

  124. L. Slama et al., Effect of pioglitazone on HIV-1-related lipodystrophy: a randomized double-blind placebo-controlled trial (ANRS 113). Antivir. Ther. 13, 67–76 (2008)

    PubMed  CAS  Google Scholar 

  125. A. Gavrila et al., Improvement in highly active antiretroviral therapy-induced metabolic syndrome by treatment with pioglitazone but not with fenofibrate: a 2 × 2 factorial, randomized, double-blinded, placebo-controlled trial. Clin. Infect. Dis. 40, 745–749 (2005)

    Article  PubMed  CAS  Google Scholar 

  126. R.W. Nesto et al., Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation 108, 2941–2948 (2003)

    Article  PubMed  Google Scholar 

  127. P. Oriot, M.P. Hermans, P. Selvais, M. Buysschaert, X. de la Tribonniere, Exenatide improves weight loss insulin sensitivity and beta-cell function following administration to a type 2 diabetic HIV patient on antiretroviral therapy. Ann. Endocrinol. (Paris) 72, 244–246 (2011)

    CAS  Google Scholar 

  128. M. Briones, M. Bajaj, Exenatide: a GLP-1 receptor agonist as novel therapy for type 2 diabetes mellitus. Expert Opin. Pharmacother. 7, 1055–1064 (2006)

    Article  PubMed  CAS  Google Scholar 

  129. J.D. Lundgren et al., European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 9, 72–81 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AG is supported by T32 HL66991, and AB by RO1 DK081553 and R21 082827, all from the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Balasubramanyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, A.D., Balasubramanyam, A. Dysregulation of glucose metabolism in HIV patients: epidemiology, mechanisms, and management. Endocrine 41, 1–10 (2012). https://doi.org/10.1007/s12020-011-9565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9565-z

Keywords

Navigation