Skip to main content
Log in

Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a serious complication of diabetes with a poorly defined etiology and limited treatment options. Early intervention is key to preventing the progression of DN. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling, and is involved in the pathogenesis of numerous diseases. Furthermore, Mfn2 is also closely associated with the development of diabetes, but its functional roles in the diabetic kidney remain unknown. This study investigated the effect of Mfn2 at an early stage of DN. Mfn2 was overexpressed by adenovirus-mediated gene transfer in streptozotocin-induced diabetic rats. Clinical parameters (proteinuria, albumin/creatinine ratio), pathological changes, ultra-microstructural changes in nephrons, expression of collagen IV and phosph-p38, ROS production, mitochondrial function, and apoptosis were evaluated and compared with diabetic rats expressing control levels of Mfn2. Endogenous Mfn2 expression decreased with time in DN. Compared to the blank transfection control group, overexpression of Mfn2 decreased kidney weight relative to body weight, reduced proteinuria and ACR, and improved pathological changes typical of the diabetic kidney, like enlargement of glomeruli, accumulation of ECM, and thickening of the basement membrane. In addition, Mfn2 overexpression inhibited activation of p38, and the accumulation of ROS; prevented mitochondrial dysfunction; and reduced the synthesis of collagen IV, but did not affect apoptosis of kidney cells. This study demonstrates that Mfn2 overexpression can attenuate pathological changes in the kidneys of diabetic rats. Further studies are needed to clarify the underlying mechanism of this protective function. Mfn2 might be a potential therapeutic target for the treatment of early stage DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Qian, E. Feldman, S. Pennathur, M. Kretzler, F.C. Brosius, From fibrosis to sclerosis, mechanism of glomerulosclerosis in diabetic nephropathy. Diabetes 57, 1439–1455 (2008)

    Article  PubMed  CAS  Google Scholar 

  2. A.Y. Lee, S.K. Chung, S.S. Chung, Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. 92, 2780–2784 (1995)

    Article  PubMed  CAS  Google Scholar 

  3. D. Koya, G.L. King, Protein kinase C activation and the development of diabetic complications. Diabetes 47, 859–866 (1998)

    Article  PubMed  CAS  Google Scholar 

  4. D. Aronson, Potential role of advanced glycosylation end products in promoting restenosis in diabetes and renal failure. Med. Hypotheses 59, 297–301 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. M. Brownlee, Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. M.H. De Borst, J. Prakash, W.B. Melenhorst, M.C. van den Heuvel, R.J. Kok, G. Navis, H. van Goor, Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J. Pathol. 213, 219–222 (2007)

    Article  PubMed  Google Scholar 

  7. A.B. el-Remessy, M. Bartoli, D.H. Platt, D. Fulton, R.B. Caldwell, Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. J. Cell Sci. 118, 243–252 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. H. Fujita, S. Omori, K. Ishikura, M. Hida, M. Awazu, ERK and p38 mediate high-glucose-induced hypertrophy and TGF-β expression in renal tubular cells. Am. J. Physiol. Renal Physiol. 286, F120–F126 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. C. Kuang-Hueih, G. Xiaomei, Ma. Dalong, G. Yanhong, L. Qian, Y. Dongmei, L. Pengfei, Q. Xiaoyan, W. Shaojun, X. Rui-Ping, T. Jian, Dysregulation of HSG triggers vascular proliferative disorders. Nat. Cell Biol. 6, 872–883 (2004)

    Article  Google Scholar 

  10. O.M. de Brito, L. Scorrano, A mitochondria-shaping protein with signaling roles beyond fusion. Antioxid. Redox. Signal. 10, 621–633 (2008)

    Google Scholar 

  11. M. Neuspiel, R. Zunino, S. Gangaraju, P. Rippstein, H. McBride, Activated mitofusin 2 signals mitochondrial fusion, interferes with bax activation, and reduces susceptibility to radical induced depolarization. J. Biol. Chem. 280, 25060–25070 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. M. Liesa, M. Palacín, A. Zorzano, Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799–845 (2009)

    Article  PubMed  CAS  Google Scholar 

  13. H. Chen, D.C. Chan, Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum. Mol. Genet. 18(R2), R169–R176 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. A. Jahani-Asl, E.C. Cheung, M. Neuspiel, J.G. MacLaurin, A. Fortin, D.S. Park, H.M. McBride, R.S. Slack, Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J. Biol. Chem. 282, 23788–23798 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. H. Yu, Y. Guo, L. Mi, X. Wang, L. Li, W. Gao, Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J. Cardiovasc. Pharmacol. Ther. 16, 205–211 (2011)

    Article  PubMed  CAS  Google Scholar 

  16. F. Lu, X.-L. Moore, X.-M. Gao, M. Dart Anthony, L. Yean Leng, X.-J. Du, Down-regulation of mitofusin2 expression in cardiac hypertrophy in vitro and in vivo. Life. Sci. 80, 2154–2160 (2007)

    Article  Google Scholar 

  17. S. Fritz, D. Rapaport, E. Klanner, W. Neupert, B. Westermann, Connection of the mitochondrial outer and innermembranes by Fzol is critical for organellarfusion. J. Cell Biol. 152, 683–692 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. W. Wang, X. Cheng, J. Lu, J. Wei, G. Fu, F. Zhu, C. Jia, L. Zhou, H. Xie, S. Zheng, Mitofusin-2 is a novel direct target of p53. Biochem. Biophys. Res. Commun. 400, 587–592 (2010)

    Article  PubMed  CAS  Google Scholar 

  19. O.M. de Brito, L. Scorrano, Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering, the role of Ras. Mitochondrion 9, 222–226 (2009)

    Article  PubMed  Google Scholar 

  20. D. Bach, S. Pich, F.X. Soriano, N. Vega, B. Baumgartner, J. Oriola, J.R. Daugaard, J. Lloberas, M. Camps, J.R. Zierath, R. Rabasa-Lhoret, H. Wallberg-Henriksson, M. Laville, M. Palacin, H. Vidal, F. Rivera, M. Brand, A. Zorzano, Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism, a novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190–17197 (2003)

    Article  PubMed  CAS  Google Scholar 

  21. S. Pich, D. Bach, P. Briones, M. Liesa, M. Camps, X. Testar, M. Palacin, A. Zorzano, The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 14, 1405–1415 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. D. Bach, D. Naon, S. Pich, F.X. Soriano, N. Vega, J. Rieusset, M. Laville, C. Guillet, Y. Boirie, H. Wallberg-Henriksson, M. Manco, M. Calvani, M. Castagneto, M. Palacin, G. Mingrone, J.R. Zierath, H. Vidal, A. Zorzano, Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle, effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54, 2685–2693 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. R. Cartoni, B. Leger, M.B. Hock, M. Praz, A. Crettenand, S. Pich, J.L. Ziltener, F. Luthi, O. Deriaz, A. Zorzano, C. Gobelet, A. Kralli, A.P. Russell, Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J. Physiol. 567, 349–358 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. G. Mingrone, M. Manco, M. Calvani, M. Castagneto, D. Naon, A. Zorzano, Could the low level of expression of the gene en- coding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity? Diabetologia 48, 2108–2114 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. I. Vanhorebeek, R. De Vos, D. Mesotten, P.J. Wouters, C. Wolf-Peeters, B.G. Van den, Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365, 53–59 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. P. Pawlikowska, B. Gajkowska, A. Orzechowski, Mitofusin 2 (Mfn2), a key player in insulin-dependent myogenesis in vitro. Cell Tissue Res. 327, 571–581 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. D.C. Chan, Mitochondrial fusion and fission in mammals. Annu. Rev. Cell. Dev. Biol. 22, 79–99 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. K. Okamoto, J.M. Shaw, Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–536 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. B. Westermann, Molecular machinery of mitochondrial fusion and fission. J. Biol. Chem. 283, 13501–13505 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. C. Brooks, Q. Wei, L. Feng, G. Dong, Y. Tao, L. Mei, Z.J. Xie, Z. Dong, Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl. Acad. Sci. USA 104, 11649–11654 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. C. Brooks, S. Cho, C. Wang, T. Yang, Z. Dong, Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am. J. Physiol. Cell. Physiol. 300, C447–C455 (2011)

    Article  PubMed  CAS  Google Scholar 

  32. C. Brooks, Q. Wei, S.G. Cho, Z. Dong, Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009)

    Article  PubMed  CAS  Google Scholar 

  33. S. Wu, F. Zhou, Z. Zhang, D. Xing, Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS. J. 278, 941–954 (2011)

    Article  PubMed  CAS  Google Scholar 

  34. G.H. Tesch, MCP-1/CCL2, a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 294, 697–701 (2008)

    Article  Google Scholar 

  35. J. Dong-Sub, L. Jin Ji, K. Seung-Jae, L. Sun Ha, P. Jehyun, S. Young Soo, Y. Tae-Hyun, H. Seung Hyeok, L. Jung Eun, K. Dong Ki, M. Sung Jin, K. Yu Seun, H. Dae Suk, K. Shin-Wook, FR167653 inhibits fibronectin expression and apoptosis in diabetic glomeruli and in high-glucose-stimulated mesangial cells. Am. J. Physiol. Renal Physiol. 295, 595–604 (2008)

    Article  Google Scholar 

  36. B.Y. Chin, A. Mohsenin, S.X. Li, A.M. Choi, M.E. Choi, Stimulation of pro-alpha(1)(I) collagen by TGF-beta(1) in mesangial cells, role of the p38 MAPK pathway. Am. J. Physiol. Renal Physiol. 280, 495–504 (2001)

    Google Scholar 

  37. L.S. Chaturvedi, S. Koul, A. Sekhon, A. Bhandari, M. Menon, H.K. Koul, Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun Nterminal.kinase signal transduction pathways in renal epithelial cells. J. Biol. Chem. 277, 13321–13330 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. A. Pozzi, R. Zent, S. Chetyrkin, C. Borza, N. Bulus, P. Chuang, D. Chen, B. Hudson, P. Voziyan, Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions. J. Am. Soc. Nephrol. 20, 2119–2125 (2009)

    Article  PubMed  CAS  Google Scholar 

  39. P.D. Ribaldo, D.S. Souza, S.K. Biswas, K. Block, J.M. Lopes de Faria, J.B. Lopes de Faria, Green tea (Camellia sinensis) attenuates nephropathy by downregulating Nox4 NADPH oxidase in diabetic spontaneously hypertensive rats. J. Nutr. 139, 96–100 (2009)

    PubMed  CAS  Google Scholar 

  40. T.N. Sato, Y. Tozawa, U. Deutsch, K. Wolburg Buchholz, Y. Fujiwara, M. Gendron Maguire, T. Gridley, H. Wolburg, W. Risau, Y. Qin, Distinct roles of the recept or tyrosin kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74 (1995)

    Article  PubMed  CAS  Google Scholar 

  41. A. Inada, K. Nagar, H. Aiar, Establishment of a diabetic mouse model with progressive diabetic nephropathy. Am. J. Pathol. 167, 327–336 (2005)

    Article  PubMed  Google Scholar 

  42. P. Moullier, G. Friedlander, D. Calise, P. Ronco, M. Perricaudet, N. Ferry, Adenoviral-mediated gene transfer to renal tubular cells in vivo. Kidney Int. 45, 1220–1225 (1994)

    Article  PubMed  CAS  Google Scholar 

  43. Y. Yamamoto, Y. Maeshima, H. Kitayama, S. Kitamura, Y. Takazawa, H. Sugiyama, Y. Yamasaki, H. Makino, Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53, 1831–1840 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. R. Cartoni, E. Arnaud, J.-J. Me’dard, O. Poirot, D.S. Courvoisier, R. Chrast, J.-C. Martinou, Expression of mitofusin 2R94Q in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A. Brain 133, 1460–1469 (2010)

    Article  PubMed  Google Scholar 

  45. E. Topo, G. Fisher, A. Sorricelli, F. Errico, A. Usiello, A. D’Aniello, Thyroid hormones and d-aspartic acid, D-aspartate oxidase, D-aspartate racemase, H2O2, And ROS in rats and mice. Chem. Biodivers. 7, 1467–1478 (2010)

    Article  PubMed  CAS  Google Scholar 

  46. S.M. Bailey, K.K. Andringa, A. Landar, V.M. Darley-Usmar, Proteomic approaches to identify and characterize alterations to the mitochondrial proteome in alcoholic liver disease. Methods Mol. Biol. 447, 369–380 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  PubMed  CAS  Google Scholar 

  48. W. Lysiak, K. Lilly, F. DiLisa, P.P. Toth, L.L. Bieber, Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J. Biol. Chem. 263, 1151–1156 (1988)

    PubMed  CAS  Google Scholar 

  49. R. Sugioka, S. Shimizu, Y. Tsujimoto, Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 279, 52726–52734 (2004)

    Article  PubMed  CAS  Google Scholar 

  50. M. Schrader, Shared components of mitochondrial and peroxisomal division. Biochim. Biophys. Acta 1763, 531–541 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. T. Yu, J.L. Robotham, Y. Yoon, Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA 103, 2653–2658 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. F.R. Danesh, M.M. Sadeghi, N. Amro, C. Philips, L. Zeng, S. Lin, A. Sahai, Y.S. Kanwar, 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway, Implications for diabetic nephropathy. Proc. Natl. Acad. Sci. USA 99, 8301–8305 (2002)

    Article  PubMed  CAS  Google Scholar 

  53. E. Riedl, F. Pfister, M. Braunagel, P. Brinkkötter, P. Sternik, M. Deinzer, S.J. Bakker, R.H. Henning, J. van den Born, B.K. Krämer, G. Navis, H.P. Hammes, B. Yard, H. Koeppel, Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. Cell. Physiol. Biochem. 28, 279–288 (2011)

    Article  PubMed  CAS  Google Scholar 

  54. E. Sohn, J. Kim, C.S. Kim, Y.S. Kim, D.S. Jang, J.S. Kim, Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via anti-apoptosis of podocytes in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 391, 733–738 (2010)

    Article  PubMed  CAS  Google Scholar 

  55. Y. Hinokio, S. Suzuki, M. Hirai, M. Chiba, A. Hirai, T. Toyota, Oxidative DNA damage in diabetes mellitus, its association with diabetic complications. Diabetologia 42, 995–998 (1999)

    Article  PubMed  CAS  Google Scholar 

  56. C.G. Schnackenberg, Oxygen radicals in cardiovascular-renal disease. Curr. Opin. Pharmacol. 2, 121–125 (2002)

    Article  PubMed  CAS  Google Scholar 

  57. M.L. Onozato, A. Tojo, A. Goto, T. Fujita, C.S. Wilcox, Oxidative stress and nitric oxide synthase in rat diabetic nephropathy, effects of ACEI and ARB. Kidney Int. 61, 186–194 (2002)

    Article  PubMed  CAS  Google Scholar 

  58. D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa, M. Haneda, Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J. Am. Soc. Nephrol. 14(Suppl. 3), 250–253 (2003)

    Article  Google Scholar 

  59. K. Kavanagh, D.M. Flynn, C. Nelson, L. Zhang, J.D. Wagner, Characterization and validation of a streptozotocin-induced diabetes model in the vervet monkey. J. Pharmacol. Toxicol. Methods 63, 296–303 (2011)

    Article  PubMed  CAS  Google Scholar 

  60. W. Wang, J. Lu, F. Zhu, J. Wei, C. Jia, Y. Zhang, L. Zhou, H. Xie, S. Zheng, Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells. Med Oncol A (2010). doi:10.1007/s12032-010-9779-6

  61. E. Paine, R. Palmantier, S.K. Akiyama, K. Olden, J.D. Roberts, Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway. J. Biol. Chem. 275, 11284–11290 (2000)

    Article  PubMed  CAS  Google Scholar 

  62. M.A. Reddy, S.G. Adler, Y.-S. Kim, L. Lanting, J. Rossi, S.-W. Kang, J. Nadler, A. Shahed, R. Natarajan, Interaction between MAPK and 12-lipoxygenase pathways in mediating growth and matrix protein expression in rat mesangial cells. Am. J. Physiol. 283, F985–F994 (2002)

    Google Scholar 

  63. S.W. Kang, R. Natarajan, A. Shahed, C.C. Nast, J. LaPage, P. Mundel, C. Kashtan, S.G. Adler, Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen alpha5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes. J. Am. Soc. Nephrol. 14, 3178–3187 (2003)

    Article  PubMed  CAS  Google Scholar 

  64. N.A. Calcutt, M.E. Cooper, T.S. Kern, A.M. Schmidt, Therapies for hyperglycaemia-induced diabetic complications, from animal models to clinical trials. Nat. Rev. Drug Discov. 8, 417–429 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Wu HT for technical assistance.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Xin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W.X., Wu, W.H., Zeng, X.X. et al. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocrine 41, 236–247 (2012). https://doi.org/10.1007/s12020-011-9555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9555-1

Keywords

Navigation