Skip to main content

Advertisement

Log in

Relationships of ESR1 and XBP1 expression in human breast carcinoma and stromal cells isolated by laser capture microdissection compared to intact breast cancer tissue

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Results from investigations of human genomics which utilize intact tissue biopsy specimens maybe compromised due to a host of uncontrolled variables including cellular heterogeneity of a sample collected under diverse conditions, then processed and stored using different protocols. To determine the cellular origin and assess relationships of mRNA expression of two genes reported to be co-expressed in human breast carcinoma (estrogen receptor-α, ESR1 and X-box binding protein 1, XBP1), gene expression analyses were performed with intact tissue sections and compared with those of laser capture microdissection (LCM)-procured carcinoma and stromal cells from serial sections of the same tissue. Frozen sections of human breast carcinomas were first evaluated for structural integrity and pathology after hematoxylin and eosin (H&E) staining. Total RNA preparations from intact tissue sections and LCM-procured carcinoma and stromal cells were reverse transcribed for measurements of ESR1 and XBP1 expression by quantitative PCR (qPCR). These results were compared with those obtained from microarray analyses of LCM-procured carcinoma cells. Levels of ESR1 and XBP1 were detected in the intact breast cancer tissue sections suggesting coordinate gene expression. Although coordinate expression of these genes was observed in the LCM-procured carcinoma cells, it was not discerned in LCM-procured stromal cells. The origin of coordinate expression of ESR1 and XBP1 observed in whole tissue sections of human breast cancer biopsies is due principally to their co-expression in carcinoma cells and not in the surrounding stromal cells as substantiated using LCM-procured cells. Collectively, a microgenomic process was established from human tissue preparation to RNA characterization and analysis to identify molecular signatures of specific cell types predicting clinical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Chalabi, L. Delort, C.L. Le, S. Satih, Y.J. Bignon, D. Bernard-Gallon, Gene signature of breast cancer cell lines treated with lycopene. Pharmacogenomics 7, 663–672 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. C.P. Giacomini, S.Y. Leung, X. Chen, S.T. Yuen, Y.H. Kim, E. Bair, J.R. Pollack, A gene expression signature of genetic instability in colon cancer. Cancer Res. 65, 9200–9205 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. S. Nanni, C. Priolo, A. Grasselli, M. D’Eletto, R. Merola, F. Moretti, M. Gallucci, C.P. De, S. Sentinelli, A.M. Cianciulli, M. Mottolese, P. Carlini, D. Arcelli, M. Helmer-Citterich, C. Gaetano, M. Loda, A. Pontecorvi, S. Bacchetti, A. Sacchi, A. Farsetti, Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol. Cancer Res. 4, 79–92 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. D.T. Ross, U. Scherf, M.B. Eisen, C.M. Perou, C. Rees, P. Spellman, V. Iyer, S.S. Jeffrey, M. van de Rijn, M. Waltham, A. Pergamenschikov, J.C. Lee, D. Lashkari, D. Shalon, T.G. Myers, J.N. Weinstein, D. Botstein, P.O. Brown, Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000)

    Article  PubMed  CAS  Google Scholar 

  5. T. Sorlie, C.M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, T. Thorsen, H. Quist, J.C. Matese, P.O. Brown, D. Botstein, L.P. Eystein, A.L. Borresen-Dale, Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. C. Sotiriou, S.Y. Neo, L.M. McShane, E.L. Korn, P.M. Long, A. Jazaeri, P. Martiat, S.B. Fox, A.L. Harris, E.T. Liu, Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA 100, 10393–10398 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. L.J. Van’t Veer, H. Dai, M.J. van de Vijver, Y.D. He, A.A. Hart, M. Mao, H.L. Peterse, K. van der Kooy, M.J. Marton, A.T. Witteveen, G.J. Schreiber, R.M. Kerkhoven, C. Roberts, P.S. Linsley, R. Bernards, S.H. Friend, Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  8. M.J. van de Vijver, Y.D. He, L.J. van’t Veer, H. Dai, A.A. Hart, D.W. Voskuil, G.J. Schreiber, J.L. Peterse, C. Roberts, M.J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E.T. Rutgers, S.H. Friend, R. Bernards, A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002)

    Google Scholar 

  9. K.A. Cole, D.B. Krizman, M.R. Emmert-Buck, The genetics of cancer—a 3D model. Nat. Genet. 21, 38–41 (1999)

    Article  PubMed  CAS  Google Scholar 

  10. M.R. Emmert-Buck, R.F. Bonner, P.D. Smith, R.F. Chuaqui, Z. Zhuang, S.R. Goldstein, R.A. Weiss, L.A. Liotta, Laser capture microdissection. Science 274, 998–1001 (1996)

    Article  PubMed  CAS  Google Scholar 

  11. J.L. Wittliff, S.T. Kunitake, S.S. Chu, J.C. Travis, Applications of laser capture microdissection in genomics and proteomics. J. Clin. Ligand Assay 23, 66 (2000)

    Google Scholar 

  12. J.L. Wittliff, M.G. Erlander, Laser capture microdissection and its applications in genomics and proteomics. Methods Enzymol. 356, 12–25 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. R.F. Bonner, M. Emmert-Buck, K. Cole, T. Pohida, R. Chuaqui, S. Goldstein, L.A. Liotta, Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997)

    Article  PubMed  CAS  Google Scholar 

  14. M.R. Emmert-Buck, J.W. Gillespie, C.P. Paweletz, D.K. Ornstein, V. Basrur, E. Appella, Q.H. Wang, J. Huang, N. Hu, P. Taylor, E.F. Petricoin III, An approach to proteomic analysis of human tumors. Mol. Carcinog. 27, 158–165 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. X.J. Ma, R. Salunga, J.T. Tuggle, J. Gaudet, E. Enright, P. McQuary, T. Payette, M. Pistone, K. Stecker, B.M. Zhang, Y.X. Zhou, H. Varnholt, B. Smith, M. Gadd, E. Chatfield, J. Kessler, T.M. Baer, M.G. Erlander, D.C. Sgroi, Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. USA 100, 5974–5979 (2003)

    Article  PubMed  CAS  Google Scholar 

  16. J.L. Wittliff, Laser capture microdissection and its applications in genomics and proteomics, in Techniques in Confocal Microscopy, ed. by P.M. Conn (Elsevier, Oxford, 2010), pp. 463–478

    Google Scholar 

  17. J.L. Wittliff, W. Raffelsberger, Mechanisms of signal transduction: sex hormones, their receptors and clinical utility. J. Clin. Ligand Assay 18, 211–235 (1995)

    Google Scholar 

  18. J.L. Wittliff, R. Pasic, K.I. Bland, Steroid and peptide hormone receptors: methods, quality control, and clinical use, in The Breast: Comprehensive Management of Benign and Malignant Diseases, ed. by K. Bland, E.M. Copeland (W.B. Saunders Co., Philadelphia, 1998), pp. 458–498

    Google Scholar 

  19. S.J. Santner, R.J. Pauley, L. Tait, J. Kaseta, R.J. Santen, Aromatase activity and expression in breast cancer and benign breast tissue stromal cells. J. Clin. Endocrinol. Metab. 82, 200–208 (1997)

    Article  PubMed  CAS  Google Scholar 

  20. R.J. Santen, S.J. Santner, R.J. Pauley, L. Tait, J. Kaseta, L.M. Demers, C. Hamilton, W. Yue, J.P. Wang, Estrogen production via the aromatase enzyme in breast carcinoma: Which cell type is responsible? J. Steroid Biochem. Mol. Biol. 61, 267–271 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. R.A. Smith, R.A. Lea, S.R. Weinstein, L.R. Griffiths, Progesterone, glucocorticoid, but not estrogen receptor mRNA is altered in breast cancer stroma. Cancer Lett. 255, 77–84 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. B.P. Gomez, R.B. Riggins, A.N. Shajahan, U. Klimach, A. Wang, A.C. Crawford, Y. Zhu, A. Zwart, M. Wang, R. Clarke, Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 21, 4013–4027 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. M. Lacroix, G. Leclercq, About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-alpha gene (ESR1) in breast cancer. Mol. Cell. Endocrinol. 219, 1–7 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. M.P. Davies, D.L. Barraclough, C. Stewart, K.A. Joyce, R.M. Eccles, R. Barraclough, P.S. Rudland, D.R. Sibson, Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int. J. Cancer 123, 85–88 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. S. Sengupta, C.G. Sharma, V.C. Jordan, Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells. Horm. Mol. Biol. Clin. Investig. 2, 235–243 (2010)

    Article  PubMed  Google Scholar 

  26. D.Y. Wang, R. Fulthorpe, S.N. Liss, E.A. Edwards, Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol. Endocrinol. 18, 402–411 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. L. Ding, J. Yan, J. Zhu, H. Zhong, Q. Lu, Z. Wang, C. Huang, Q. Ye, Ligand-independent activation of estrogen receptor alpha by XBP-1. Nucleic Acids Res. 31, 5266–5274 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. Y. Fang, J. Yan, L. Ding, Y. Liu, J. Zhu, C. Huang, H. Zhao, Q. Lu, X. Zhang, X. Yang, Q. Ye, XBP-1 increases ERalpha transcriptional activity through regulation of large-scale chromatin unfolding. Biochem. Biophys. Res. Commun. 323, 269–274 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. F. Bertucci, V. Nasser, S. Granjeaud, F. Eisinger, J. Adelaide, R. Tagett, B. Loriod, A. Giaconia, A. Benziane, E. Devilard, J. Jacquemier, P. Viens, C. Nguyen, D. Birnbaum, R. Houlgatte, Gene expression profiles of poor-prognosis primary breast cancer correlate with survival. Hum. Mol. Genet. 11, 863–872 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. T. Fujimoto, M. Onda, H. Nagai, T. Nagahata, K. Ogawa, M. Emi, Upregulation and overexpression of human X-box binding protein 1 (hXBP-1) gene in primary breast cancers. Breast Cancer 10, 301–306 (2003)

    Article  PubMed  Google Scholar 

  31. D.A. Kerr II, J.F. Eliason, J.L. Wittliff, Steroid receptor and growth factor receptor expression in human nonsmall cell lung cancers using cells procured by laser-capture microdissection. Adv. Exp. Med. Biol. 617, 377–384 (2008)

    Article  PubMed  CAS  Google Scholar 

  32. N.L. Simone, R.F. Bonner, J.W. Gillespie, M.R. Emmert-Buck, L.A. Liotta, Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276 (1998)

    Article  PubMed  CAS  Google Scholar 

  33. N.L. Simone, A.T. Remaley, L. Charboneau, E.F. Petricoin III, J.W. Glickman, M.R. Emmert-Buck, T.A. Fleisher, L.A. Liotta, Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452 (2000)

    Article  PubMed  CAS  Google Scholar 

  34. M. Fleisher, A.M. Dnistrian, C.M. Sturgeon, J.L. Wittliff, Practice guidelines and recommendations for use of tumor markers in the clinic, in Tumor Markers: Physiology, Pathobiology, Technology, and Clinical Applications, ed. by D.P. Diamandis, H.A. Fritsche, H. Lilja, D.W. Chan, M.K. Schwartz (AACC Press, Washington, 2002), pp. 33–63

    Google Scholar 

  35. M. Srinivasan, D. Sedmak, S. Jewell, Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971 (2002)

    Article  PubMed  CAS  Google Scholar 

  36. M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)

    Article  PubMed  CAS  Google Scholar 

  37. X.J. Ma, W. Wang, R. Salunga, J.T. Tuggle, K. Stecker, T.M. Baer, M.G. Erlander, J.L. Wittliff, Gene expression associated with clinical outcome in breast cancer via laser capture microdissection. Breast Cancer Res. Treat. 82 (2003)

  38. J.L. Wittliff, X.J. Ma, K.K. Stecker, R.C. Salunga, J.T. Tuggle, Y.K. Tran, K.N. Mesina, T.R. Payette, P.R. McQuary, M.P. Pistone, B.M. Zhang, D.D. Hartwig, T.H. Wittliff, W. Wang, M.G. Erlander, Gene expression profiles and tumor marker signatures of human breast carcinoma cells procured by laser capture microdissection. Endocr. Soc. Abs. 538 (2002)

  39. J.L. Wittliff, X.J. Ma, W. Wang, R. Salunga, J.T. Tuggle, K. Stecker, T.H. Wittliff, M.G. Erlander, Expression of estrogen receptor-associated genes in breast cancer cells procured by laser capture microdissection. Jensen Symp. Abs. 81 (2003)

  40. A.L. Bookout, C.L. Cummins, D.J. Mangelsdorf, J.M. Pesola, M.F. Kramer, High-throughput real-time quantitative reverse transcription PCR. Curr. Protoc. Mol. Biol. Chapter 15, Unit 15.8 (2006)

  41. H.J. Motulsky, Prism 4 Statistics Guide—Statistical Analyses for Laboratory and Clinical Researchers, 4th edn. (GraphPad Software Inc., San Diego, 2003), pp. 71–73

    Google Scholar 

  42. A. Casabianca, C. Orlandi, A. Fraternale, M. Magnani, Development of a real-time PCR assay using SYBR Green I for provirus load quantification in a murine model of AIDS. J. Clin. Microbiol. 42, 4361–4364 (2004)

    Article  PubMed  CAS  Google Scholar 

  43. M.W. Pfaffl, G.W. Horgan, L. Dempfle, Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36 (2002)

    Article  PubMed  Google Scholar 

  44. E. Zini, M. Franchini, M. Osto, A. Vogtlin, F. Guscetti, P. Linscheid, K. Kaufmann, B. Sigrist, M. Ackermann, T.A. Lutz, C.E. Reusch, Quantitative real-time PCR detection of insulin signalling-related genes in pancreatic islets isolated from healthy cats. Vet. J. 183, 287–293 (2008)

    Article  PubMed  Google Scholar 

  45. S.Z. Haslam, K.A. Nummy, The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland. J. Steroid Biochem. Mol. Biol. 42, 589–595 (1992)

    Article  PubMed  CAS  Google Scholar 

  46. S.Z. Haslam, T.L. Woodward, Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res. 5, 208–215 (2003)

    Article  PubMed  CAS  Google Scholar 

  47. R. Judd, Advantages of an immunohistochemical estrogen receptor assay. South. Med. J. 84, 853–856, 861 (1991)

    Google Scholar 

  48. T. Suzuki, P.J. Higgins, D.R. Crawford, Control selection for RNA quantitation. Biotechniques 29, 332–337 (2000)

    PubMed  CAS  Google Scholar 

  49. S.L. Hembruff, D.J. Villeneuve, A.M. Parissenti, The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data. Anal. Biochem. 345, 237–249 (2005)

    Article  PubMed  CAS  Google Scholar 

  50. J. Vandesompele, P.K. De, F. Pattyn, B. Poppe, R.N. Van, P.A. De, F. Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002)

  51. P. Scriven, S. Coulson, R. Haines, S. Balasubramanian, S. Cross, L. Wyld, Activation and clinical significance of the unfolded protein response in breast cancer. Br. J. Cancer 101, 1692–1698 (2009)

    Article  PubMed  CAS  Google Scholar 

  52. S. Myhre, H. Mohammed, T. Tramm, J. Alsner, G. Finak, M. Park, J. Overgaard, A.L. Borresen-Dale, A. Frigessi, T. Sorlie, In silico ascription of gene expression differences to tumor and stromal cells in a model to study impact on breast cancer outcome. PLoS. ONE. 5, e14002 (2010)

    Article  PubMed  Google Scholar 

  53. V.R. Grann, A.B. Troxel, N.J. Zojwalla, J.S. Jacobson, D. Hershman, A.I. Neugut, Hormone receptor status and survival in a population-based cohort of patients with breast carcinoma. Cancer 103, 2241–2251 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. D. Alan Kerr II for providing technical advice and Dr. Irina A. Smolenkova for technical assistance in the conduct of this study. Supported in part by grants from the Phi Beta Psi Sorority Charity Trust, the University of Louisville, Office of the Executive Vice President for Research and a CTSP Award from the Commonwealth of Kentucky. SAA was a recipient of a Graduate Fellowship from the Integrated Programs in Biomedical Sciences, University of Louisville, and an AACR Scholar-in-Training Award funded by Susan G. Komen for the Cure. The experiments outlined in this manuscript comply with the current laws of the country in which they were performed.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Wittliff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andres, S.A., Wittliff, J.L. Relationships of ESR1 and XBP1 expression in human breast carcinoma and stromal cells isolated by laser capture microdissection compared to intact breast cancer tissue. Endocrine 40, 212–221 (2011). https://doi.org/10.1007/s12020-011-9522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9522-x

Keywords

Navigation