Skip to main content
Log in

Do we really know why diabetes remits after gastric bypass surgery?

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Roux-en-Y gastric bypass surgery (GBP) results in 30–40% sustained weight loss and improved type 2 diabetes in up to 80% of patients. The relative contribution of the gut neuroendocrine changes after GBP versus the weight loss has not been fully elucidated. There are clear differences between weight loss by GBP and by dietary intervention or gastric banding. One of them is the enhanced post-prandial release of incretin hormones and the recovery of the incretin effect on insulin secretion after GBP, not seen after diet-induced weight loss. The favorable changes in incretin hormones after GBP result in recovery of the early phase insulin secretion and lower post-prandial glucose levels during oral glucose administration. The enhanced incretin response may be related to the neuroglycopenia post-GBP. In parallel with changes of glucose metabolism, a larger decrease of circulating branched-chain amino acids in relation to improved insulin sensitivity and insulin secretion is observed after GBP compared to diet. The mechanisms of the rapid and longterm endocrine and metabolic changes after GBP are not fully elucidated. Changes in rate of eating, gastric emptying, nutrient absorption and sensing, bile acid metabolism, and microbiota may all be important. Understanding the mechanisms by which incretin release is exaggerated post-prandially after GBP may help develop new less invasive treatment options for obesity and diabetes. Equally important would be to identify biological predictors of success or failure and to understand the mechanisms of weight regain and/or diabetes relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Buchwald, Y. Avidor, E. Braunwald, M.D. Jensen, W. Pories, K. Fahrbach, K. Schoelles, Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004)

    Article  PubMed  CAS  Google Scholar 

  2. J.B. Dixon, P.E. O’Brien, J. Playfair, L. Chapman, L.M. Schachter, S. Skinner, J. Proietto, M. Bailey, M. Anderson, Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008)

    Article  PubMed  CAS  Google Scholar 

  3. L. Rossetti, A. Giaccari, R.A. DeFronzo, Glucose toxicity. Diabetes Care 13, 610–630 (1990)

    Article  PubMed  CAS  Google Scholar 

  4. J.L. Leahy, S. Bonner-Weir, G.C. Weir, Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care 15, 442–455 (1992)

    Article  PubMed  CAS  Google Scholar 

  5. B. Laferrère, S. Heshka, K. Wang, Y. Khan, J. McGinty, J. Teixeira, A.B. Hart, B. Olivan, Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 30, 1709–1716 (2007)

    Article  PubMed  Google Scholar 

  6. B. Laferrère, J. Teixeira, J. McGinty, H. Tran, J.R. Egger, A. Colarusso, B. Kovack, B. Bawa, N. Koshy, H. Lee, K. Yapp, B. Olivan, Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 2479–2485 (2008)

    Article  PubMed  Google Scholar 

  7. J.J. Holst, C. Orskov, Incretin hormones—an update. Scand. J. Clin. Lab. Invest. Suppl. 234, 75–85 (2001)

    Google Scholar 

  8. B. Kreymann, G. Williams, M.A. Ghatei, S.R. Bloom, Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987)

    Article  PubMed  CAS  Google Scholar 

  9. M.J. Theodorakis, O. Carlson, S. Michopoulos, M.E. Doyle, M. Juhaszova, K. Petraki, J.M. Egan, Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am. J. Physiol. Endocrinol. Metab. 290, E550–E559 (2006)

    Article  PubMed  CAS  Google Scholar 

  10. R. Ebert, W. Creutzfeldt, Gastrointestinal peptides and insulin secretion. Diabetes Metab. Rev. 3, 1–26 (1987)

    Article  PubMed  CAS  Google Scholar 

  11. M.A. Nauck, E. Homberger, E.G. Siegel, R.C. Allen, R.P. Eaton, R. Ebert, W. Creutzfeldt, Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986)

    Article  PubMed  CAS  Google Scholar 

  12. F. Preitner, M. Ibberson, I. Franklin, C. Binnert, M. Pende, A. Gjinovci, T. Hansotia, D.J. Drucker, C. Wollheim, R. Burcelin, B. Thorens, Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest. 113, 635–645 (2004)

    PubMed  CAS  Google Scholar 

  13. A. Flint, A. Raben, A.K. Ersboll, J.J. Holst, A. Astrup, The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. Relat. Metab. Disord. 25, 781–792 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. J.P. Gutzwiller, J. Drewe, B. Goke, H. Schmidt, B. Rohrer, J. Lareida, C. Beglinger, Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. 276, R1541–R1544 (1999)

    PubMed  CAS  Google Scholar 

  15. E. Naslund, J. Bogefors, S. Skogar, P. Gryback, H. Jacobsson, J.J. Holst, P.M. Hellstrom, GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am. J. Physiol. 277, R910–R916 (1999)

    PubMed  CAS  Google Scholar 

  16. D.A. D’Alessio, R.L. Prigeon, J.W. Ensinck, Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes. A physiological role of glucagon-like peptide I. Diabetes 44, 1433–1437 (1995)

    Article  PubMed  Google Scholar 

  17. M. Nauck, F. Stockmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986)

    Article  PubMed  CAS  Google Scholar 

  18. J.J. Holst, Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005. Diabetologia 49, 253–260 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. D.L. Sarson, N. Scopinaro, S.R. Bloom, Gut hormone changes after jejunoileal (JIB) or biliopancreatic (BPB) bypass surgery for morbid obesity. Int. J. Obes. 5, 471–480 (1981)

    PubMed  CAS  Google Scholar 

  20. E. Naslund, P. Gryback, P.M. Hellstrom, H. Jacobsson, J.J. Holst, E. Theodorsson, L. Backman, Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int. J. Obes. Relat. Metab. Disord. 21, 387–392 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. E. Naslund, L. Backman, J.J. Holst, E. Theodorsson, P.M. Hellstrom, Importance of small bowel peptides for the improved glucose metabolism 20 years after jejunoileal bypass for obesity. Obes. Surg. 8, 253–260 (1998)

    Article  PubMed  CAS  Google Scholar 

  22. R. Morinigo, V. Moize, M. Musri, A.M. Lacy, S. Navarro, J.L. Marin, S. Delgado, R. Casamitjana, J. Vidal, Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab. 91, 1735–1740 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. D.L. Sarson, H.S. Besterman, S.R. Bloom, Radioimmunoassay of gastric inhibitory polypeptide and its release in morbid obesity and after jejuno-ileal bypass [proceedings]. J. Endocrinol. 81, 155P–156P (1979)

    PubMed  CAS  Google Scholar 

  24. K.B. Lauritsen, K.C. Christensen, K.H. Stokholm, Gastric inhibitory polypeptide (GIP) release and incretin effect after oral glucose in obesity and after jejunoileal bypass. Scand. J. Gastroenterol. 15, 489–495 (1980)

    Article  PubMed  CAS  Google Scholar 

  25. J.D. Halverson, J. Kramer, A. Cave, A. Permutt, J. Santiago, Altered glucose tolerance, insulin response, and insulin sensitivity after massive weight reduction subsequent to gastric bypass. Surgery 92, 235–240 (1982)

    PubMed  CAS  Google Scholar 

  26. M. Bose, J. Teixeira, P.E. Scherer, F.X. Pi-Sunyer, B. Bawa, B. Laferrère, Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J. Diabetes 2, 47–55 (2010)

    Article  PubMed  CAS  Google Scholar 

  27. B. Laferrère, Effect of gastric bypass surgery on the incretins. Diabetes Metab. 35, 513–517 (2009)

    Article  PubMed  Google Scholar 

  28. T.L. Kindel, S.M. Yoder, R.J. Seeley, D.A. D’Alessio, P. Tso, Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J. Gastrointest. Surg. 13, 1762–1772 (2009)

    Article  PubMed  Google Scholar 

  29. M. Salehi, R.L. Prigeon, D.A. D’Alessio, Gastric bypass surgery enhances glucagon-like peptide 1 stimulated postprandial insulin secretion in human (In Press)

  30. M. Salehi, L. Baum, R. Prigeon, D. D’Alessio, Blocking GLP-1 receptor corrects postprandial hypoglycemia in hyperinsulinemic hypoglycemia after gastric bypass surgery for obesity. Diabetes 60, A482 (2011)

    Article  Google Scholar 

  31. C. Verdich, S. Toubro, B. Buemann, M.J. Lysgard, H.J. Juul, A. Astrup, The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int. J. Obes. Relat. Metab. Disord. 25, 1206–1214 (2001)

    Article  PubMed  CAS  Google Scholar 

  32. R.V. Cohen, C.A. Schiavon, J.S. Pinheiro, J.L. Correa, F. Rubino, Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2: a report of 2 cases. Surg. Obes. Relat. Dis. 3, 195–197 (2007)

    Article  PubMed  Google Scholar 

  33. G.J. Service, G.B. Thompson, F.J. Service, J.C. Andrews, M.L. Collazo-Clavell, R.V. Lloyd, Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N. Engl. J. Med. 353, 249–254 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. T.A. Kellogg, J.P. Bantle, D.B. Leslie, J.B. Redmond, B. Slusarek, T. Swan, H. Buchwald, S. Ikramuddin, Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg. Obes. Relat. Dis. 4, 492–499 (2008)

    Article  PubMed  Google Scholar 

  35. L. Farilla, A. Bulotta, B. Hirshberg, C.S. Li, N. Khoury, H. Noushmehr, C. Bertolotto, M.U. Di, D.M. Harlan, R. Perfetti, Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144, 5149–5158 (2003)

    Article  PubMed  CAS  Google Scholar 

  36. M. Cornu, J.Y. Yang, E. Jaccard, C. Poussin, C. Widmann, B. Thorens, Glucagon-like peptide-1 protects beta-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 58, 1816–1825 (2009)

    Article  PubMed  CAS  Google Scholar 

  37. T. McLaughlin, M. Peck, J. Holst, C. Deacon, Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery. J. Clin. Endocrinol. Metab. 95, 1851–1855 (2010)

    Article  PubMed  CAS  Google Scholar 

  38. F. Rubino, J. Marescaux, Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann. Surg. 239, 1–11 (2004)

    Article  PubMed  Google Scholar 

  39. D. Pacheco, D.A. de Luis, A. Romero, S.M. Gonzalez, R. Conde, O. Izaola, R. Aller, A. Delgado, The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats. Am. J. Surg. 194, 221–224 (2007)

    Article  PubMed  CAS  Google Scholar 

  40. V. Aguirre, N. Stylopoulos, R. Grinbaum, L.M. Kaplan, An endoluminal sleeve induces substantial weight loss and normalizes glucose homeostasis in rats with diet-induced obesity. Obesity (Silver Spring) 16, 2585–2592 (2008)

    Article  CAS  Google Scholar 

  41. A. Patriti, E. Facchiano, C. Annetti, M.C. Aisa, F. Galli, C. Fanelli, A. Donini, Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes. Surg. 15, 1258–1264 (2005)

    Article  PubMed  Google Scholar 

  42. A.D. Strader, T.P. Vahl, R.J. Jandacek, S.C. Woods, D.A. D’Alessio, R.J. Seeley, Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am. J. Physiol. Endocrinol. Metab. 288, E447–E453 (2005)

    Article  PubMed  CAS  Google Scholar 

  43. M. Horowitz, P.J. Collins, P.E. Harding, D.J. Shearman, Gastric emptying after gastric bypass. Int. J. Obes. 10, 117–121 (1986)

    PubMed  CAS  Google Scholar 

  44. A.P. Chambers, M.A. Stefater, H.E. Wilson-Perez, L. Jessen, S. Sisley, K.K. Ryan, S. Gaitonde, J.E. Sorrell, M. Toure, J. Berger, D.A. D’Alessio, D.A. Sandoval, R.J. Seeley, S.C. Woods, Similar effects of roux-en-Y gastric bypass and vertical sleeve gastrectomy on glucose regulation in rats. Physiol. Behav. (2011)

  45. R.S. Gill, D.W. Birch, X. Shi, A.M. Sharma, S. Karmali, Sleeve gastrectomy and type 2 diabetes mellitus: a systematic review. Surg. Obes. Relat. Dis. (2011)

  46. B. Geloneze, S.R. Geloneze, E.A. Chaim, C. Stabe, F. Hirsch, A. Felici, G. Ambert, J. Ambascia, J.C. Pareja, Metabolic surgery as a treatment for non-obese type 2 diabetic patients: incretins, adipocytokines and insulin secretion/resistance changes in a One-Year Interventional Clinical Controlled Study (In Press)

  47. B. Olivan, J. Teixeira, M. Bose, B. Bawa, T. Chang, H. Summe, H. Lee, B. Laferrère, Effect of weight loss by diet or gastric bypass surgery on peptide YY3–36 levels. Ann. Surg. 249, 948–953 (2009)

    Article  PubMed  Google Scholar 

  48. B. Laferrère, N. Swerdlow, B. Bawa, S. Arias, M. Bose, B. Olivan, J. Teixeira, J. McGinty, K.I. Rother, Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 95, 4072–4076 (2010)

    Article  PubMed  Google Scholar 

  49. D.E. Cummings, D.S. Weigle, R.S. Frayo, P.A. Breen, M.K. Ma, E.P. Dellinger, J.Q. Purnell, Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002)

    Article  PubMed  Google Scholar 

  50. B. Laferrère, D. Reilly, S. Arias, N. Swerdlow, P. Gorroochurn, B. Bawa, M. Bose, J. Teixeira, R.D. Stevens, B.R. Wenner, J.R. Bain, M.J. Muehlbauer, A. Haqq, L. Lien, S.H. Shah, L.P. Svetkey, C.B. Newgard, Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 3, 80re2 (2011)

    Article  PubMed  Google Scholar 

  51. P. Felig, E. Marliss, G.F. Cahill Jr., Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969)

    Article  PubMed  CAS  Google Scholar 

  52. C.B. Newgard, J. An, J.R. Bain, M.J. Muehlbauer, R.D. Stevens, L.F. Lien, A.M. Haqq, S.H. Shah, M. Arlotto, C.A. Slentz, J. Rochon, D. Gallup, O. Ilkayeva, B.R. Wenner, W.S. Yancy Jr, H. Eisenson, G. Musante, R.S. Surwit, D.S. Millington, M.D. Butler, L.P. Svetkey, A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009)

    Article  PubMed  CAS  Google Scholar 

  53. T.J. Wang, M.G. Larson, R.S. Vasan, S. Cheng, E.P. Rhee, E. McCabe, G.D. Lewis, C.S. Fox, P.F. Jacques, C. Fernandez, C.J. O’Donnell, S.A. Carr, V.K. Mootha, J.C. Florez, A. Souza, O. Melander, C.B. Clish, R.E. Gerszten, Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011)

    Article  PubMed  Google Scholar 

  54. L. Sjostrom, K. Narbro, C.D. Sjostrom, K. Karason, B. Larsson, H. Wedel, T. Lystig, M. Sullivan, C. Bouchard, B. Carlsson, C. Bengtsson, S. Dahlgren, A. Gummesson, P. Jacobson, J. Karlsson, A.K. Lindroos, H. Lonroth, I. Naslund, T. Olbers, K. Stenlof, J. Torgerson, G. Agren, L.M. Carlsson, Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007)

    Article  PubMed  Google Scholar 

  55. M. DiGiorgi, D.J. Rosen, J.J. Choi, L. Milone, B. Schrope, L. Olivero-Rivera, N. Restuccia, S. Yuen, M. Fisk, W.B. Inabnet, M. Bessler, Re-emergence of diabetes after gastric bypass in patients with mid- to long-term follow-up. Surg. Obes. Relat. Dis. 6, 249–253 (2010)

    Article  PubMed  Google Scholar 

  56. S.M. Chikunguwo, L.G. Wolfe, P. Dodson, J.G. Meador, N. Baugh, J.N. Clore, J.M. Kellum, J.W. Maher, Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 6, 254–259 (2010)

    Article  PubMed  Google Scholar 

  57. American Diabetes Association, American Diabetes Association: Clinical Practice Recommendations 2001. Diabetes Care 34, 1–98 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Dr Laferrère received funding from the American Diabetes Association CR-7-05 CR-18, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases R01-DK67561, 1 UL1 RR024156-02, Obesity Research Center DK-26687, Diabetes Endocrinology Research Center DK-63068-05.

Conflict of interest

The author has not declared any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blandine Laferrère.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laferrère, B. Do we really know why diabetes remits after gastric bypass surgery?. Endocrine 40, 162–167 (2011). https://doi.org/10.1007/s12020-011-9514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9514-x

Keywords

Navigation