Skip to main content

Advertisement

Log in

Epicardial adipose tissue thickness in type 1 diabetic patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Insulin resistance is getting important in the course of type 1 diabetes mellitus. Visceral fat depot is associated with insulin resistance and assessment of epicardial fat thickness is a way of measuring visceral fat. The aim of the study was to measure epicardial adipose tissue (EAT) thickness and to determine its relationship with waist-hip-ratio (WHR) and estimated glucose disposal rate (eGDR) in adult type 1 diabetic patients. Thirty-six type 1 diabetic patients (aged 31 ± 8 years; Female/Male: 22/14) and 43 age, gender and BMI matched healthy controls were included. Fasting blood glucose (FBG), hemoglobin A1c, and lipid profiles were measured. Waist-hip-ratio (WHR) was calculated. Daily insulin dose/kg of patients were recorded and eGDR of all subjects was calculated. Epicardial adipose tissue (EAT) thickness was evaluated by echocardiography. EAT thickness of the type 1 diabetic patients was significantly higher than controls (3.30 ± 1.06 vs. 2.30 ± 0.34 mm, P < 0.0001). EAT thickness was correlated with age (P = 0.05; r = 0.35), WHR (P = 0.003; r = 0.67), daily insulin dose/kg (r = 0.45, P = 0.005), and eGDR (r = −0.55, P = 0.0004). Multivariate analysis revealed WHR and eGDR to be related to EAT among age, WHR, daily insulin dose/kg, eGDR, FBG, and hemoglobin A1c (r2 of the model = 0.64). Epicardial adipose tissue thickness is increased in type 1 diabetic patients compared to controls and is related to WHR and eGDR in this group of patients. This measurement may point to the presence of insulin resistance in type 1 diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.S. Soedamah-Muthu, J.H. Fuller, H.E. Mulnier, V.S. Raleigh, R.A. Lawrenson, H.M. Colhoun, All-cause mortality rates in patients with type 1 diabetes mellitus compared with a non-diabetic population from the UK general practice research database, 1992–1999. Diabetologia 49, 660–666 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. G. Pambianco, T. Costacou, D. Ellis, D.J. Becker, R. Klein, T.J. Orchard, The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 55, 1463–1469 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. E. Bonora, G. Formentini, F. Calcaterra, S. Lombardi, F. Marini, L. Zenari, F. Saggiani, M. Poli, S. Perbellini, A. Raffaelli, V. Cacciatori, L. Santi, G. Targher, R. Bonadonna, M. Muggeo, HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care 25, 1135–1141 (2002)

    Article  PubMed  Google Scholar 

  4. A.J. Hanley, K. Williams, M.P. Stern, S.M. Haffner, Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 25, 1177–1184 (2002)

    Article  PubMed  Google Scholar 

  5. E.S. Kilpatrick, A.S. Rigby, S.L. Atkin, Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the DiabetesControl and Complications Trial. Diabetes Care 30, 707–712 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. T.J. Orchard, J.C. Olson, J.R. Erbey, K. Williams, K.Y. Forrest, L. Smithline Kinder, D. Ellis, D.J. Becker, Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 26, 1374–1379 (2003)

    Article  PubMed  Google Scholar 

  7. S.S. Soedamah-Muthu, N. Chaturvedi, M. Toeller, B. Ferriss, P. Reboldi, G. Michel, C. Manes, J.H. Fuller, EURODIAB Prospective Complications Study Group: risk factors for coronary heart disease in type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study. Diabetes Care 27, 530–537 (2004)

    Article  PubMed  Google Scholar 

  8. M. McGill, L. Molyneaux, S.M. Twigg, D.K. Yue, The metabolic syndrome in type 1 diabetes: does it exist and does it matter? J. Diabetes Complicat. 22, 18–23 (2008)

    Article  PubMed  Google Scholar 

  9. K.M. Rexrode, J.E. Buring, J.E. Manson, Abdominal and total adiposity and risk of coronary heart disease in men. Int. J. Obes. Relat. Metab. Disord. 25, 1047–1056 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. K.M. Rexrode, V.J. Carey, C.H. Hennekens, E.E. Walters, G.A. Colditz, M.J. Stampfer, W.C. Willett, J.E. Manson, Abdominal adiposity and coronary heart disease in women. JAMA 280, 1843–1848 (1998)

    Article  PubMed  CAS  Google Scholar 

  11. A.N. Peiris, M.S. Sothmann, R.G. Hoffmann, M.I. Hennes, C.R. Wilson, A.B. Gustafson, A.H. Kissebah, Adiposity, fat distribution, and cardiovascular risk. Ann. Intern. Med. 110, 867–872 (1989)

    PubMed  CAS  Google Scholar 

  12. G. Iacobellis, F. Assael, M.C. Ribaudo, A. Zappaterreno, G. Alessi, U. Di Mario, F. Leonetti, Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes. Res. 11, 304–310 (2003)

    Article  PubMed  Google Scholar 

  13. J. Shirani, K. Berezowski, W.C. Roberts, Quantitative measurement of normal and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance, and its effect on electrocardiographic QRS voltage. Am. J. Cardiol. 76, 414–418 (1995)

    Article  PubMed  CAS  Google Scholar 

  14. G. Iacobellis, M.C. Ribaudo, F. Assael, E. Vecci, C. Tiberti, A. Zappaterreno, U. Di Mario, F. Leonetti, Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 88, 5163–5168 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. A.E. Malavazos, F. Ermetici, C. Coman, M.M. Corsi, L. Morricone, B. Ambrosi, Influence of epicardial adipose tissue and adipocytokine levels on cardiac abnormalities in visceral obesity. Int. J. Cardiol. 121, 132–134 (2007)

    Article  PubMed  Google Scholar 

  16. G. Iacobellis, F. Leonetti, N. Singh, A.M. Sharma, Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 115, 272–273 (2007)

    Article  PubMed  Google Scholar 

  17. H. Aydin, A. Toprak, O. Deyneli, D. Yazici, O. Tarçin, S. Sancak, D. Yavuz, S. Akalin, Epicardial fat tissue thickness correlates with endothelial dysfunction and other cardiovascular risk factors in patients with metabolic syndrome. Metab. Syndr. Relat. Disord. 8, 229–234 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. R. Taguchi, J. Takasu, Y. Itani, R. Yamamoto, K. Yokoyama, S. Watanabe, Y. Masuda, Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 157, 203–209 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. G. Iacobellis, A.M. Sharma, Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr. Pharm. Des. 13, 2180–2184 (2007)

    Article  PubMed  CAS  Google Scholar 

  20. A.M. de Vos, M. Prokop, C.J. Roos, M.F. Meijs, Y.T. van der Schouw, A. Rutten, P.M. Gorter, M.J. Cramer, P.A. Doevendans, B.J. Rensing, M.L. Bartelink, B.K. Velthuis, A. Mosterd, M.L. Bots, Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur. Heart J. 29, 777–783 (2008)

    Article  PubMed  Google Scholar 

  21. L.M. Thorn, C. Forsblom, J. Fagerudd, M.C. Thomas, K. Pettersson-Fernholm, M. Saraheimo, J. Wadén, M. Rönnback, M. Rosengård-Bärlund, C.G. Björkesten, M.R. Taskinen, P.H. Groop, FinnDiane Study Group: metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 28, 2019–2024 (2005)

    Article  PubMed  Google Scholar 

  22. G. Pambianco, T. Costacou, T.J. Orchard, The prediction of major outcomes of type 1 diabetes: a 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes Care 30, 1248–1254 (2007)

    Article  PubMed  Google Scholar 

  23. K.V. Williams, J.R. Erbey, D. Becker, S. Arslanian, T.J. Orchard, Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes 49, 626–632 (2000)

    Article  PubMed  CAS  Google Scholar 

  24. E. Ho, Y. Shimada, Formation of the epicardium studied with the scanning electron microscope. Dev. Biol. 66, 579–585 (1978)

    Article  PubMed  CAS  Google Scholar 

  25. J.M. Marchington, C.A. Mattacks, C.M. Pond, Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Biochem. Physiol. B. 94, 225–232 (1989)

    Article  CAS  Google Scholar 

  26. G. Iacobellis, G. Barbaro, The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm. Metab. Res. 40, 442–445 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. N. Chaowalit, V.K. Somers, P.A. Pellikka, C.S. Rihal, F. Lopez-Jimenez, Subepicardial adipose tissue and the presence and severity of coronary artery disease. Atherosclerosis 186, 354–359 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. R. Djaberi, J.D. Schuijf, J.M. Van Werkhoven, G. Nucifora, J.W. Jukema, J.J. Bax, Relation of epicardial adipose tissue to coronary atherosclerosis. Am. J. Cardiol. 102, 1602–1607 (2008)

    Article  PubMed  Google Scholar 

  29. S. Eroglu, L.E. Sade, A. Yildirir, U. Bal, S. Ozbicer, A.S. Ozgul, H. Bozbas, A. Aydinalp, H. Muderrisoglu, Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 19, 211–217 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. C.P. Wang, H.L. Hsu, W.C. Hung, T.H. Yu, Y.H. Chen, C.A. Chiu, L.F. Lu, F.M. Chung, S.J. Shin, Y.J. Lee, Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin. Endocrinol. (Oxf.) 70, 876–882 (2009)

    Article  Google Scholar 

  31. G. Iacobellis, F. Leonetti, Epicardial adipose tissue and insulin resistance in obese subjects. J. Clin. Endocrinol. Metab. 90, 6300–6302 (2005)

    Article  PubMed  CAS  Google Scholar 

  32. G. Iacobellis, G. Barbaro, H.C. Gerstein, Relationship of epicardial fat thickness and fasting glucose. Int. J. Cardiol. 128, 424–426 (2008)

    Article  PubMed  Google Scholar 

  33. N. Mattsson, T. Rönnemaa, M. Juonala, J.S. Viikari, O.T. Raitakari, The prevalence of the metabolic syndrome in young adults. The Cardiovascular Risk in Young Finns Study. J. Intern. Med. 261, 159–169 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. J. Nádas, Z. Putz, J. Fövényi, Z. Gaál, A. Gyimesi, T. Hídvégi, N. Hosszúfalusi, G. Neuwirth, T. Oroszlán, P. Pánczél, G. Széles, G. Vándorfi, G. Winkler, I. Wittmann, G. Jermendy, Cardiovascular risk factors characteristic for the metabolic syndrome in adult patients with type 1 diabetes. Exp. Clin. Endocrinol. Diabetes 117, 107–112 (2009)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Yazıcı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazıcı, D., Özben, B., Yavuz, D. et al. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine 40, 250–255 (2011). https://doi.org/10.1007/s12020-011-9478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9478-x

Keywords

Navigation