Skip to main content

Advertisement

Log in

Comparison of lymphomononuclear cell energy metabolism between healthy, impaired glucose intolerance and type 2 diabetes mellitus patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 25 May 2010

Abstract

Diabetes mellitus (DM) is a complex disease that affects many systems. The most important cells of the immune system are lymphomononuclear (LMN) cells. Here, we aimed to evaluate the energy metabolism of LMN cells in patients with diabetes and impaired glucose tolerance. We measured LMN cell energy metabolism in patients with type 2 diabetes mellitus, impaired glucose tolerance (IGT) and healthy subjects. Cells were freshly isolated from peripheral blood and the subgroups were determined by flow cytometric method. Lactate production and glycogen utilization were significantly increased in the LMN cells of patients with type 2 DM and IGT when compared with healthy volunteers. No statistical difference was observed between the patients with type 2 DM and IGT. There was a significant correlation between fasting plasma glucose and lactate production in LMN cells. LMN cells changed their energy pathway in a diabetic state and preferred anaerobic glycolysis. Prediabetic range also affected energy metabolism in LMN cells. This abnormal energy production might cause dysfunction in LMN cells and the immune system in diabetic and prediabetic patients. In conclusion, we concluded that impaired glucose metabolism could change energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P. Froguel, G. Velho, Genetic determinants of type 2 diabetes. Recent Prog. Horm. Res. 56, 91–105 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. M. Guvener, I. Pasaoglu, M. Demircin, M. Oc, Preoperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocr. J. 49, 531–537 (2002)

    Article  PubMed  Google Scholar 

  3. A. Bensadoun, D. Weinstein, Assay of proteins in the presence of interfering materials. Anal. Biochem. 70, 241–250 (1976)

    Article  CAS  PubMed  Google Scholar 

  4. D. Reinhold, S. Ansorge, E.D. Schleicher, Elevated glucose levels stimulate transforming growth factor-_1 (TGF-_1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm. Metab. Res. 28, 267–270 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. S.E. Geerlings, E.C. Brouwer, K.C. Van Kessel, W. Gaastra, R.P. Stolk, A.I. Hoepelman, Cytokine secretion is impaired in women with diabetes mellitus. Eur. J. Clin. Invest. 30(11), 995–1001 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. M. Delamaire, D. Maugendre, M. Moreno, M.C. Le Goff, H. Allannic, B. Genetet, Impaired leucocyte functions in diabetic patients. Diabet. Med. 14(1), 29–34 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. R. Otton, J.R. Mendonça, R. Curi, Diabetes causes marked changes in lymphocyte metabolism. J. Endocrinol. 174, 55–61 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. R. Curi, P. Newsholme, T.C. Pithon-Curi, M. Pires-de-Melo, C. Garcia, P.I. Homem-de-Bittencourt Jr., A.R.P. Guimarães, Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils. Braz. J. Med. Biol. Res. 32, 15–21 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. D. Reinhold, S. Ansorge, E.D. Schleicher, Elevated glucose levels stimulate transforming growth factor-_1 (TGF-_1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm. Metab. Res. 28, 267–270 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. R.E. Dolkart, B. Halpern, J. Perlman, Comparison of antibody responses in normal and alloxan diabetic mice. Diabetes 20, 162–167 (1971)

    Google Scholar 

  11. A.A. Mahmoud, H.M. Rodman, M.A. Mandel, K.S. Warren, Induced and spontaneous diabetes mellitus and suppression of cell-mediated immunological responses. J. Clin. Invest. 57, 362–367 (1976)

    Article  CAS  PubMed  Google Scholar 

  12. J.D. Bybee, D.E. Rogers, The phagocytic activity of polymorphonuclear leukocytes obtained from patients with diabetes mellitus. J. Lab. Clin. Med. 61, 1–13 (1964)

    Google Scholar 

  13. J.D. Bagdade, K.L. Neilson, R.J. Bugler, Reversible abnormalities in phagocytic function in poorly controlled diabetic patients. Am. J. Med. Sci. 263, 451–456 (1972)

    Article  CAS  PubMed  Google Scholar 

  14. S. Katz, B. Klein, I. Elian, P. Fishman, M. Djaldetti, Phagocytotic activity of monocytes from diabetic patients. Diabetes Care 6, 479–482 (1983)

    Article  CAS  PubMed  Google Scholar 

  15. D. Tater, B. Tepaut, J.P. Bercovici, P. Youinou, Polymorphonuclear cell derangements in type 1 diabetes. Horm. Metab. Res. 19, 642–647 (1987)

    Article  CAS  PubMed  Google Scholar 

  16. American diabetes association. Diagnosis and classification of diabetes Mellitus Diabetes care, vol 29, supplement 1, January, 2006

  17. K.G. Alberti, P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1. Diagnosis and classification of diabetes mellitus, provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1978)

    Google Scholar 

  19. L. Kenar, H. Boyunaga, M. Serdar, T. Karayilanoglu, M.K. Erbil, Effect of nitrogen mustard, a vesicant agent, on lymphocyte energy metabolism. Clin. Chem. Lab. Med. 44(10), 1253–1257 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. A. Koller, L.A. Kaplan, Total serum protein, in: Methods in Clinical Chemistry, ed. by A.J. Pesce, L.A. Kaplan (Mosby, St. Louis, MO, 1987), pp. 1134–1144

  21. H.R. Horton, L.A. Moran, R.S. Ochs, J.D. Rawn, K.G. Scrimgeour, Principles of Biochemistry. (Prentice Hall, Upper Saddle River, NJ, 2002)

  22. W.Z. Hassid, S. Abraham, Chemical procedures for analysis of polysaccharides, in Methods in Enzymology, vol. 3, ed. by S.P. Colowick, N.O. Kaplan (Academic Press, New York, 1957), pp. 34–37

    Google Scholar 

  23. R.K. Murray, P.A. Mayes, D.K. Granner, V.W. Rodwell, Harper’s Biochemistry, 24th edn. (Prentice Hall, New Jersey, 1996)

    Google Scholar 

  24. Y. Ishida, K. Takagi-Ohta, Lactate production of mammalian intestinal and vascular smooth muscles under aerobic and hypoxic conditions. J. Smooth Muscle Res. 32(2), 61–67 (1996)

    CAS  PubMed  Google Scholar 

  25. N.J. MacIver, S.R. Jacobs, H.L. Wieman, J.A. Wofford, J.L. Coloff, J.C. Rathmell, Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 84, 949 (2008)

    Article  PubMed  Google Scholar 

  26. V.R. Moreno-Aurioles, R. Montaño, M. Conde, R. Bustos, F. Sobrino, Streptozotocin-induced diabetes increases fructose 2, 6-biphosphate levels and glucose metabolism in thymus lymphocytes. Life Sci 58, 477–484 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. P.C. Champe, R.A. Harvey, D.R. Ferrier, Glycolysis. in: Lippincott’s Illustrated Reviews: Biochemistry, 3rd edn. ed. by P. Champe, R. Harvey, D. Ferrier (Lippincott Williams & Wilkins: Philadelphia, PA, 2004), pp. 89–106

  28. T.C. Alba-Loureiro, S.M. Hirabara, J.R. Mendonça, R. Curi, T.C. Pithon-Curi, Diabetes causes marked changes in function and metabolism of rat neutrophils. J. Endocrinol. 188, 295–303 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. K.P. Bouter, F.H. Meyling, J.B. Hoekstra, N. Masurel, D.W. Erkelens, R.J. Diepersloot, Influence of blood glucose levels on peripheral lymphocytes in patients with diabetes mellitus. Diabetes Res 19(2), 77–80 (1992)

    CAS  PubMed  Google Scholar 

  30. E.S. Kopeć, Effect of metabolically uncompensated diabetes mellitus on mononuclear cell populations in peripheral blood. Pol. Arch. Med. Wewn. 87(4–5), 277–284 (1992)

    PubMed  Google Scholar 

  31. P. Newsholme, R. Curi, T.C. Pithon Curi, C.J. Murphy, C. Garcia, M. Pires-de-Melo, Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J. Nutr. Biochem. 10, 316–324 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. S. Walrand, C. Guillet, Y. Boirie, M.-P. Vasson. Insulin differentially regulates monocyte and polymorphonuclear neutrophil functions in healthy young and elderly humans. J. Clin. Endocrinol. Metab. 91(7):2738–2748

  33. The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993)

    Article  Google Scholar 

  34. UKProspective Diabetes Study (UKPDS) Group, Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998)

    Article  Google Scholar 

  35. UKProspective Diabetes Study (UKPDS) Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sahin.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12020-010-9349-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozsari, L., Karadurmus, N., Sahin, M. et al. Comparison of lymphomononuclear cell energy metabolism between healthy, impaired glucose intolerance and type 2 diabetes mellitus patients. Endocr 37, 135–139 (2010). https://doi.org/10.1007/s12020-009-9281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9281-0

Keywords

Navigation