Skip to main content

Advertisement

Log in

Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study

  • Case Report
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

We initiated the present work to explore whether neutrophil gelatinase-associated lipocalin (NGAL) could be used to predict the progression of diabetic nephropathy in type-2 diabetic patients. Seventy-four type-2 diabetic patients were divided into normo-, micro- and macro-albuminuria groups according to their 24 h-urinary albumin excreting rate. Serum and urine NGAL, and other clinical parameters were detected. Patients were followed and measurements were repeated 1 year later. An increased tendency of urine NGAL and a decreased tendency of serum NGAL were detected, from normo-albuminuria group to macro-albuminuria group. Serum NGAL was found to rise after follow-up. Moreover, urine NGAL was found to be correlated positively with cystatin C, urea nitrogen, and serum creatinine (SCr), and inversely with glomerular filtration rate (GFR), while serum NGAL correlated negatively with cystatin C and urea nitrogen, at both baseline and follow-up levels. The results indicate that NGAL correlates closely with renal function. Both serum and urine NGAL are sensitive for predicting the progression of type-2 diabetic nephropathy but they may change differently. Serum NGAL may be more useful in early detection and urine NGAL may be more meaningful in renal function assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Ritz, I. Rychlik, F. Locatelli, S. Halimi, Am. J. Kidney Dis. 34, 795–808 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. A.S. Levey, J. Coresh, E. Balk et al., Ann. Intern. Med. 139, 137–147 (2003)

    PubMed  Google Scholar 

  3. M. Mussap, M. Dalla Vestra, P. Fioretto et al., Kidney Int. 61, 1453–1461 (2000)

    Article  Google Scholar 

  4. M. Kanauchi, H. Nishioka, T. Hashimoto, K. Dohi, Nippon Jinzo Gakkai Shi 37(11), 649–654 (1995)

    CAS  PubMed  Google Scholar 

  5. L. Kjeldsen, A.H. Johnsen, H. Sengelov et al., J. Biol. Chem. 268(14), 10425–10432 (1993)

    CAS  PubMed  Google Scholar 

  6. J.B. Cowland, N. Borregaard, Genomics 45, 17–23 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. J. Yang, D. Goetz, J.-Y. Li et al., Mol. Cell 10, 1045–1056 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. K. Mori, H.T. Lee, D. Rapoport et al., J. Clin. Invest. 115(3), 610–621 (2005)

    CAS  PubMed  Google Scholar 

  9. Y. Wang, K.S.L. Lam, E.W. Kraegen et al., Clin. Chem. 53(1), 34–41 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Y.C. Ma, L. Zuo, J.H. Chen et al., J. Am. Soc. Nephro. 17, 2937–2944 (2006)

    Article  Google Scholar 

  11. S. Supavekin, W. Zhang, R. Kucherlapati et al., Kidney Int. 63, 1714–1724 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. J. Mishra, K. Mori, Q. Ma et al., Am. J. Nephrol. 24, 307–315 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. M. Nguyen, G. Ross, C. Dent, Am. J. Nephrol. 25, 318–326 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. J. Mishra, C. Dent, R. Tarabishi, Lancet 365, 1231–1238 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. M.M. Mitsnefes, T.S. Kathman, J. Mishra et al., Pediatr. Nephrol. 22(1), 101–108 (2007)

    Article  PubMed  Google Scholar 

  16. M. Coles, T. Diercks, B. Muehlenweg et al., J. Mol. Biol. 289(1), 139–157 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. S. Mclennan, D.K. Yue, J.R. Turtle, Nephron 79(3), 293–298 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. E. Ishimura, Y. Nishizawa, S. Shoji et al., Life Sci. 58(16), l331–l1337 (1996)

    Article  Google Scholar 

  19. L. Yan, N. Borregaard, L. Kjeldsen et al., J. Biol. Chem. 276(40), 37258–37265 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. C. Murray, D. Tammo, M. Bernd et al., J. Mol. Biol. 289(40), 139–157 (1999)

    Google Scholar 

  21. F.P. Schena, L. Gesualdo, J. Am. Soc. Nephrol. 16, 30–33 (2005)

    Article  Google Scholar 

  22. E. Galkina, K. Ley, J. Am. Soc. Nephrol. 17, 368–377 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. C. Mora, J.F. Navarro, Curr. Diab. Rep. 5(6), 399–401 (2005)

    Article  PubMed  Google Scholar 

  24. T.W. Meyer, Kidney Int. 63, 377–378 (2003)

    Article  PubMed  Google Scholar 

  25. J.R. Bundgaard, H. Sengelov, N. Borregaard, L. Kjeldsen, Biochem. Biophys. Res. Commun. 202(3), 1468–1475 (1994)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the funds from the Scientific and Technological Projects of Guangdong Province (2006B36005007), Guangdong Scientific Fund Key Items (No. 7118419), National Natural Science Foundation of China (No. 30672376) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050560003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ren Chen.

Additional information

Yi-Hua Yang and Xiao-Jie He contributed equally to the work.

Shen-Ren Chen, En-Min Li and Li-Yan Xu are co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YH., He, XJ., Chen, SR. et al. Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocr 36, 45–51 (2009). https://doi.org/10.1007/s12020-009-9187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9187-x

Keywords

Navigation