Skip to main content
Log in

Clinical Outcomes of Impaired Muscle and Bone Interactions

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Muscle and bone are in constant interaction. With aging, there is a progressive decline in muscle mass, known as sarcopenia, as well as in bone mass, which is known as osteopenia/osteoporosis. Sarcopenia and osteoporosis increase the risk of suffering falls and fractures, respectively. In fact, the simultaneous occurrence of osteoporosis and sarcopenia has been observed in a subset of frailer individuals at higher risk of disability, falls and fractures. However, the particular clinical outcomes that are unique to the sarco-osteoporotic patients remain unknown. In this review, we propose a common mechanism of sarco-osteoporosis and summarize those clinical and biochemical features that are prevalent in sarco-osteoporotic subjects. We expect that by describing a set of biological, clinical and functional characteristics that are associated with sarco-osteoporosis, this information could be used to inform the design of future trials and to develop interventions for this particular syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cederholm T, Cruz-Jentoft AJ, Maggi S. Sarcopenia and fragility fractures. Eur J Phys Rehabil Med. 2013;49:111–7.

    CAS  PubMed  Google Scholar 

  2. Visser M, Schaap LA. Consequences of sarcopenia. Clin Geriatr Med. 2011;27:387–99.

    Article  PubMed  Google Scholar 

  3. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Krege JH, Wan X, Lentle BC, Berger C, Langsetmo L, Adachi JD, Prior JC, Tenenhouse A, Brown JP, Kreiger N, Olszynski WP, Josse RG, Goltzman D; CaMos Research Group. Fracture risk prediction: importance of age, BMD and spine fracture status. Bonekey Rep 2013;2:404.

  5. DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res. 2013;28:1509–18.

    Article  PubMed  Google Scholar 

  6. Tong J, Li W, Vidal C, Yeo LS, Fatkin D, Duque G. Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech Ageing Dev. 2011;132:552–9.

    Article  CAS  PubMed  Google Scholar 

  7. Carla Task Force on Sarcopenia: propositions for clinical trials. Abellan van Kan G, André E, Bischoff Ferrari HA, Boirie Y, Onder G, Pahor M, Ritz P, Rolland Y, Sampaio C, Studenski S, Visser M, Vellas B. J Nutr Health Aging. 2009;1:700–7.

  8. Sayer AA, Robinson SM, Patel HP, Shavlakadze T, Cooper C, Grounds MD. New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing. 2013;42:145–50.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH. Health, aging, and body. longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90:1579–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bucci L, Yani SL, Fabbri C, Bijlsma AY, Maier AB, Meskers CG, Narici MV, Jones DA, McPhee JS, Seppet E, Gapeyeva H, Pääsuke M, Sipilä S, Kovanen V, Stenroth L, Musarò A, Hogrel JY, Barnouin Y, Butler-Browne G, Capri M, Franceschi C, Salvioli S. Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects. Biogerontology. 2013;14:261–72.

    Article  CAS  PubMed  Google Scholar 

  11. Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis. 2012;4:61–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. Geneva, World Health Organization, 1994 (WHO Technical Report Series, No. 843).

  13. McCloskey E, Johansson H, Oden A, Kanis JA. Fracture risk assessment. Clin Biochem. 2012;45:887–93.

    Article  PubMed  Google Scholar 

  14. Nguyen TV, Center JR, Eisman JA. Individualized fracture risk assessment: progresses and challenges. Curr Opin Rheumatol. 2013;25:532–41.

    Article  PubMed  Google Scholar 

  15. Leslie WD, Lix LM. Comparison between various fracture risk assessment tools. Osteoporos Int. 2013 Jun 25.

  16. Ng A, Duque G. Osteoporosis as a lipotoxic disease. Bonekey Rep. 2010;7:108–23.

    Google Scholar 

  17. Maugeri D, Russo MS, Franzé C, Motta V, Motta M, Destro G, Speciale S, Santangelo A, Panebianco P, Malaguarnera M. Correlations between C-reactive protein, interleukin-6, tumor necrosis factor-alpha and body mass index during senile osteoporosis. Arch Gerontol Geriatr. 1998;27:159–63.

    Article  CAS  PubMed  Google Scholar 

  18. Binkley N, Buehring B. Beyond FRAX: it’s time to consider “sarco-osteopenia”. J Clin Densitom. 2009;12:413–6.

    Article  PubMed  Google Scholar 

  19. Kull M, Kallikorm R, Lember M. Impact of a new sarco-osteopenia definition on health-related quality of life in a population-based cohort in Northern Europe. J Clin Densitom. 2012;15:32–8.

    Article  PubMed  Google Scholar 

  20. Walston JD. Sarcopenia in older adults. Curr Opin Rheumatol. 2012;24:623–7.

    Article  PubMed  Google Scholar 

  21. Mijnarends DM, Meijers JM, Halfens RJ, ter Borg S, Luiking YC, Verlaan S, Schoberer D, Cruz Jentoft AJ, van Loon LJ, Schols JM. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc. 2013;14:170–8.

    Article  PubMed  Google Scholar 

  22. Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28:1721–8.

    Article  PubMed  Google Scholar 

  23. Shen W, Gong X, Weiss J, Jin Y. Comparison among T1-weighted magnetic resonance imaging, modified Dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat. J Obes. 2013. doi:10.1155/2013/298675.

    PubMed Central  PubMed  Google Scholar 

  24. Demontiero O, Li W, Thembani E, Duque G. Validation of noninvasive quantification of bone marrow fat volume with microCT in aging rats. Exp Gerontol. 2011;46:435–40.

    Article  PubMed  Google Scholar 

  25. Kaji H. Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care. 2013;16:272–7.

    Article  PubMed  Google Scholar 

  26. Sirola J, Kröger H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. J Osteoporos. 2011;2011:536735.

    PubMed Central  PubMed  Google Scholar 

  27. Gianoudis J, Bailey CA, Sanders KM, Nowson CA, Hill K, Ebeling PR, Daly RM. Osteo-cise: strong bones for life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures. BMC Musculoskelet Disord. 2012;13:78.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6:50–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Genaro Pde S, Martini LA. Effect of protein intake on bone and muscle mass in the elderly. Nutr Rev. 2010;68:616–23.

    Google Scholar 

  30. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15:2504–12.

    Article  CAS  PubMed  Google Scholar 

  31. Buehring B, Binkley N. Myostatin—the holy grail for muscle, bone, and fat? Curr Osteoporos Rep. 2013;11:407–14.

    Article  CAS  PubMed  Google Scholar 

  32. Bradley L, Yaworsky PJ, Walsh FS. Myostatin as a therapeutic target for musculoskeletal disease. Cell Mol Life Sci. 2008;65:2119–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research cited in this review has been funded by project grants from the National Health and Medical Research Council (NHMRC) of Australia (Grants 632766 and 632767) and the Nepean Medical Research Foundation.

Disclosures

Conflict of interest

Oddom Demontiero, Derek Boersma, Pushpa Suriyaarachchi and Gustavo Duque declare that they have no conflict of interest.

Animal/Human Studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Duque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demontiero, O., Boersma, D., Suriyaarachchi, P. et al. Clinical Outcomes of Impaired Muscle and Bone Interactions. Clinic Rev Bone Miner Metab 12, 86–92 (2014). https://doi.org/10.1007/s12018-014-9164-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9164-7

Keywords

Navigation