Skip to main content

Advertisement

Log in

Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another?

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The complexity of cell interactions with their microenvironment and their ability to communicate at the autocrine, paracrine, and endocrine levels has gradually but significantly evolved in the last three decades. The musculoskeletal system has been historically recognized to be governed by a relationship of proximity and function, chiefly dictated by mechanical forces and the work of gravity itself. In this review article, we first provide a historical overview of the biomechanical theory of bone–muscle interactions. Next, we expand to detail the significant evolution in our understanding of the function of bones and muscles as secretory organs. Then, we review and discuss new evidence in support of a biochemical interaction between these two tissues. We then propose that these two models of interaction are complementary and intertwined providing for a new frontier for the investigation of how bone–muscle cross talk could be fully explored for the targeting of new therapies for musculoskeletal diseases, particularly the twin conditions of aging, osteoporosis and sarcopenia. In the last section, we explore the bone–muscle cross talk in the context of their interactions with other tissues and the global impact of these multi-tissue interactions on chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ioannidis I. The road from obesity to type 2 diabetes. Angiology. 2008;59(Supp 2):39S–43S.

    Article  PubMed  Google Scholar 

  2. Berg AH, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.

    Article  CAS  PubMed  Google Scholar 

  3. Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416–22.

    Article  CAS  PubMed  Google Scholar 

  4. Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. AJP Cell Physiol. 2011;302:C327–59.

    Article  Google Scholar 

  5. Begg DP, Woods SC. The endocrinology of food intake. Nat Rev Endocrinol. 2013;9:584–97.

    Article  CAS  PubMed  Google Scholar 

  6. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years live with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.

    Article  PubMed  Google Scholar 

  7. Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244:139–47.

    Article  CAS  PubMed  Google Scholar 

  8. Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S. A quantitative evaluation of osteoblast–osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone. 1992;13:363–8.

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka K, Matsuo T, Ohta M, Sato T, Tezuka K, Nijweide PJ, et al. Time-lapse microcinematography of osteocytes. Miner Electrolyte Metab. 1995;21:189–92.

    CAS  PubMed  Google Scholar 

  10. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASB J. 1995;9:441–5.

    CAS  Google Scholar 

  11. Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuna-canalicular network. FASEB J. 1999;13:101–12.

    Google Scholar 

  12. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of one formatin via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiologyical role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol. 2012;28:563–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.

    Article  CAS  PubMed  Google Scholar 

  17. Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991;14:237–50.

    Article  CAS  PubMed  Google Scholar 

  18. Ducy P, Desbois C, Boyce B, Pinero G, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.

    Article  CAS  PubMed  Google Scholar 

  19. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  20. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostablandin F2α: a bone remodeling mediator. J Cell Physiol. 2013;228:25–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mo C, Romero-Suarez S, Brotto MA. Pge2 accelerates myogenesis of C2C12 myoblasts. Biophys J. 2011;100:288a.

    Article  Google Scholar 

  23. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.

    Article  CAS  PubMed  Google Scholar 

  24. Orestes-Cardoso SM, Nefussi JR, Hotton D, Mesbah M, Orestes-Cardoso MDS, Robert B, et al. Postnatal Msx1 expression pattern in craniofacial, axial, and appendicular skeleton of transgenic mice from the first week until the second year. Dev Dyn. 2001;221:1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Pearson OM, Lieberman DE. The aging of Wolff’s law: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;125:63–99.

    Article  Google Scholar 

  26. Lang TF. The bone–muscle relationship in men and women. J Osteoporos. 2011;2011:1–4.

    Article  Google Scholar 

  27. Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16:S393–9.

    Google Scholar 

  28. Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40:1196–202.

    Article  PubMed  Google Scholar 

  29. Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610–38.

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Pinilla F. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88:2187–95.

    Article  CAS  PubMed  Google Scholar 

  31. Goldspink DF, Goldspink G. The role of passive stretch in retarding muscle atrophy. In: Nix WA, Vrbova G, editors. Electrical stimulation and neuromuscular disorders. Berlin: Springer; 1986. p. 91–100.

    Chapter  Google Scholar 

  32. Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 1997;20:815–22.

    Article  CAS  PubMed  Google Scholar 

  33. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24:113–9.

    Article  CAS  PubMed  Google Scholar 

  34. Steensberg A, Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529:237–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Andersen K, Pedersen B. The role of inflammation in vascular insulin resistance with focus on IL-6. Horm Metab Res. 2008;40:635–9.

    Article  CAS  PubMed  Google Scholar 

  36. Keller C. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):2748–50.

    CAS  PubMed  Google Scholar 

  37. Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32:833–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103:1093–8.

    Article  CAS  PubMed  Google Scholar 

  39. Matthews VB, Astrom MB, Chan MHS, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.

    Article  CAS  PubMed  Google Scholar 

  40. Pedersen L, Olsen CH, Pedersen BK, Hojman P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. AJP Endocrinol Metab. 2012;302:E831–40.

    Article  CAS  Google Scholar 

  41. Li Y, Huard J. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol. 2002;161:895–907.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454:961–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hee Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(12):4899–907.

    Google Scholar 

  44. Chan JKK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130:284e–95e.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997;387:83–90.

    Article  CAS  PubMed  Google Scholar 

  46. Jouliaekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007;7:310–5.

    Article  CAS  Google Scholar 

  47. Zimmers TA. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486–8.

    Article  CAS  PubMed  Google Scholar 

  48. Hamrick MW, McPherron AC, Lovejoy CO. Bone mineral content and density in humerus of adult myostatin-deficient mice. Calcif Tissue Int. 2002;71:63–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec. 2003;272A:388–91.

    Article  CAS  Google Scholar 

  50. Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2005;21:477–83.

    Article  PubMed  Google Scholar 

  51. Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8:573–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Coiro V, Volpi R, Cataldo S, Magotti MG, Maffei ML, Giumelli C, et al. Effect of physiological exercise on osteocalcin levels in subjects with adrenal incidentaloma. J Endocrinol Invest. 2012;35:357–8.

    Article  CAS  PubMed  Google Scholar 

  53. Centers for Disease Control and Prevention (US); Prevalence of obesity among older adults in the United States, 2007–2010. 2012. (NCHS Data Brief; no. 106).

  54. Beltran-Sanchez H, Harhay MO, Harhay MM, McElliogott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703.

    Article  PubMed  Google Scholar 

  55. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137:231–43.

    Article  CAS  PubMed  Google Scholar 

  56. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48.

    Article  CAS  PubMed  Google Scholar 

  57. Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.

    Article  CAS  PubMed  Google Scholar 

  58. Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle. 2013;4:89–94.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–48.

    Article  CAS  PubMed  Google Scholar 

  60. Jensen GL, Friedmann JM. Obesity is associated with functional decline in community-dwelling rural older persons. J Am Geriatr Soc. 2002;50(5):918–23.

    Article  PubMed  Google Scholar 

  61. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):1–7.

    Article  Google Scholar 

  62. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes. Diabetes Care. 2010;33(7):1497–9.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Magkos F, Wang X, Mittendorfer B. Metabolic actions of insulin in men and women. Nutrition. 2010;26(7–8):686–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59:1217–24.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hofbauer LG, Brueck C, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. JBMR. 2007;22(9):1317–28.

    Article  CAS  Google Scholar 

  66. Strotmeyer ES, Cauley JA. Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes. 2007;14:429–35.

    Article  PubMed  Google Scholar 

  67. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.

    Article  CAS  PubMed  Google Scholar 

  68. Hamann C, Kirschner S, Gunther KP, Hofbauer LC. Bone sweet bone—osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8:297–305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH-National Institutes of Aging Program Project Grant P01 AG039355-01-A1, Missouri Life Sciences Research Board and the Thompson Endowment Fund (MB). We are thankful to the members of the UMKC Bone Biology Group and Muscle Biology Group for useful discussions that were helpful in the preparation of this manuscript.

Disclosures

Conflict of interest

Janalee Isaacson and Marco Brotto declare that they have no conflict of interest.

Animal/Human Studies

This review does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacson, J., Brotto, M. Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another?. Clinic Rev Bone Miner Metab 12, 77–85 (2014). https://doi.org/10.1007/s12018-013-9152-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-013-9152-3

Keywords

Navigation