Skip to main content

Advertisement

Log in

Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Reactive gliosis, microgliosis, and subsequent secretion of various inflammatory mediators like cytokines, proteases, reactive oxygen, and nitrogen species are the suggested key players associated with systemic inflammation-driven neuroinflammation and cognitive impairments in various neurological disorders. Conventionally, non-steroidal anti-inflammatory drugs are prescribed to suppress inflammation but due to their adverse effects, their usage is not well accepted. Natural products are emerging better therapeutic agents due to their affordability and inherent pleiotropic biological activities. In Ayurveda, Ashwagandha (Withania somnifera) is well known for its immunomodulatory properties. The current study is an extension of our previous report on in vitro model system and was aimed to investigate anti-neuroinflammatory potential of water extract from the Ashwagandha leaves (ASH-WEX) against systemic LPS-induced neuroinflammation and associated behavioral impairments using in vivo rat model system. Oral feeding of ASH-WEX for 8 weeks significantly ameliorated the anxiety-like behavior as evident from Elevated plus maze test. Suppression of reactive gliosis, inflammatory cytokines production like TNF-α, IL-1β, IL-6, and expression of nitro-oxidative stress enzymes like iNOS, COX2, NOX2 etc were observed in ASH-WEX-treated animals. NFκB, P38, and JNK MAPKs pathways analysis showed their involvement in inflammation suppression which was further confirmed by inhibitor studies. The current study provides first ever preclinical evidence and scientific validation that ASH-WEX exhibits the anti-neuroinflammatory potential against systemic LPS-induced neuroinflammation and ameliorates associated behavioral abnormalities. Aqueous extract from Ashwagandha leaves and its active phytochemicals may prove to be promising candidates to prevent neuroinflammation associated with various neuropathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aid, S., Langenbach, R., & Bosetti, F. (2008). Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. Journal of Neuroinflammation, 5(1), 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allan, S. M., & Rothwell, N. J. (2003). Inflammation in central nervous system injury. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1438), 1669–1677.

    Article  CAS  Google Scholar 

  • Archana, R., & Namasivayam, A. (1998). Antistressor effect of Withania somnifera. Journal of Ethnopharmacology, 64(1), 91–93.

    Article  Google Scholar 

  • Bachstetter, A. D., Xing, B., de Almeida, L., Dimayuga, E. R., Watterson, D. M., & Van Eldik, L. J. (2011). Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). Journal of Neuroinflammation, 8(1), 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badger, A. M., Cook, M. N., Lark, M. W., Newman-Tarr, T. M., Swift, B. A., Nelson, A. H., et al. (1998). SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. The Journal of Immunology, 161(1), 467–473.

    PubMed  CAS  Google Scholar 

  • Baitharu, I., Jain, V., Deep, S. N., Hota, K. B., Hota, S. K., Prasad, D., & Ilavazhagan, G. (2013). Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. Journal of Ethnopharmacology, 145(2), 431–441.

    Article  PubMed  Google Scholar 

  • Bargagna-Mohan, P., Paranthan, R. R., Hamza, A., Dimova, N., Trucchi, B., Srinivasan, C., et al. (2010). Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. Journal of Biological Chemistry, 285(10), 7657–7669.

    Article  PubMed  CAS  Google Scholar 

  • Barrientos, R. M., Watkins, L. R., Rudy, J. W., & Maier, S. F. (2009). Characterization of the sickness response in young and aging rats following E. coli infection. Brain, Behavior, and Immunity, 23(4), 450–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassi, G. S., Kanashiro, A., Santin, F. M., de Souza, G. E., Nobre, M. J., & Coimbra, N. C. (2012). Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & Clinical Pharmacology & Toxicology, 110(4), 359–369.

    Article  CAS  Google Scholar 

  • Bhatnagar, M., Sisodia, S. S., & Bhatnagar, R. (2005). Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats. Annals of the New York Academy of Sciences, 1056(1), 261–278.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, S. K., Bhattacharya, A., Sairam, K., & Ghosal, S. (2000). Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine, 7(6), 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Biesmans, S., Meert, T. F., Bouwknecht, J. A., Acton, P. D., Davoodi, N., De Haes, P., et al. (2013). Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators of Inflammation, 2013, 271359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 57.

    Article  PubMed  CAS  Google Scholar 

  • Bossù, P., Cutuli, D., Palladino, I., Caporali, P., Angelucci, F., Laricchiuta, D., et al. (2012). A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18. Journal of Neuroinflammation, 9(1), 101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83.

    Article  PubMed  CAS  Google Scholar 

  • Carvey, P. M., Chang, Q., Lipton, J. W., & Ling, Z. (2003). Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson’s disease. Frontiers in Biosciences, 8, s826–s837.

    Article  Google Scholar 

  • Cho, N. H., Seong, S. Y., Choi, M. S., & Kim, I. S. (2001). Expression of chemokine genes in human dermal microvascular endothelial cell lines infected with Orientia tsutsugamushi. Infection and Immunity, 69(3), 1265–1272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conductier, G., Blondeau, N., Guyon, A., Nahon, J. L., & Rovère, C. (2010). The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. Journal of Neuroimmunology, 224(1), 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado, A., & Nebreda, A. R. (2010). Mechanisms and functions of p38 MAPK signalling. Biochemical Journal, 429(3), 403–417.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, C., Campion, S., Lunnon, K., Murray, C. L., Woods, J. F., Deacon, R. M., et al. (2009). Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biological Psychiatry, 65(4), 304–312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Silva, J., Pierrat, B., Mary, J. L., & Lesslauer, W. (1997). Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. Journal of Biological Chemistry, 272(45), 28373–28380.

    Article  PubMed  Google Scholar 

  • Dantzer, R. (2004). Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity. European Journal of Pharmacology, 500(1–3), 399–411.

    Article  PubMed  CAS  Google Scholar 

  • Dantzer, R. (2006). Cytokine, sickness behavior, and depression. Neurologic Clinics, 24(3), 441–460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 21(2), 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endale, M., Kim, T. H., Kwak, Y. S., Kim, N. M., Kim, S. H., Cho, J. Y., et al. (2017). Torilin inhibits inflammation by limiting TAK1-mediated MAP kinase and NF-κB activation. Mediators of Inflammation, 2017, 13.

    Article  CAS  Google Scholar 

  • Fan, K., Wu, X., Fan, B., Li, N., Lin, Y., Yao, Y., & Ma, J. (2012). Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide -induced neuroinflammation. Journal of Neuroinflammation, 9, 96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaestel, M. (2006). MAPKAP kinases—MKs—two’s company, three’s a crowd. Nature Reviews Molecular Cell Biology, 7(2), 120.

    Article  PubMed  CAS  Google Scholar 

  • Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., & Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson’s disease. Journal of Neurochemistry, 81(6), 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  • González, H., Elgueta, D., Montoya, A., & Pacheco, R. (2014). Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. Journal of Neuroimmunology, 274(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Grover, A., Shandilya, A., Punetha, A., Bisaria, V. S., & Sundar, D. (2010). Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite withaferin A. BMC Genomics, 11(4), S25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, A., & Singh, S. (2014). Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharmaceutical Biology, 52(3), 308–320.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M., & Kaur, G. (2016). Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: A mechanistic study. Journal of Neuroinflammation, 13(1), 193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han, Z., Boyle, D. L., Chang, L., Bennett, B., Karin, M., Yang, L., et al. (2001). c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. The Journal of Clinical Investigation, 108(1), 73–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience & Biobehavioral Reviews, 12(2), 123–137.

    Article  CAS  Google Scholar 

  • Herrera, J. A., Espinosa-Oliva, A. M., Oliva-Martin, M. J., Carrillo-Jimenez, A., Venero, J. & de Pablos, M. R. (2015). Collateral damage: Contribution of peripheral inflammation to neurodegenerative diseases. Current Topics in Medicinal Chemistry, 15(21), 2193–2210.

    Article  PubMed  CAS  Google Scholar 

  • Heyninck, K., Lahtela-Kakkonen, M., Van der Veken, P., Haegeman, G., & Berghe, W. V. (2014). Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochemical Pharmacology, 91(4), 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. L., & Nakamura, K. (2007). The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1341–1348.

    Article  CAS  Google Scholar 

  • Kaileh, M., Berghe, W. V., Heyerick, A., Horion, J., Piette, J., Libert, C., et al. (2007). Withaferin A strongly elicits IκB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. Journal of Biological Chemistry, 282(7), 4253–4264.

    Article  PubMed  CAS  Google Scholar 

  • Kataria, H., Kumar, S., Chaudhary, H., & Kaur, G. (2016). Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Molecular Neurobiology, 53(6), 4143–4158.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, T., & Kaur, G. (2017). Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. Journal of Neuroinflammation, 14(1), 201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur, T., Singh, H., Mishra, R., Manchanda, S., Gupta, M., Saini, V., et al. (2017). Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Molecular and Cellular Biochemistry, 427(1–2), 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Kent, S., Bluthé, R. M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Khedgikar, V., Kushwaha, P., Gautam, J., Verma, A., Changkija, B., Kumar, A., et al. (2013). Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death & Disease, 4(8), e778.

    Article  CAS  Google Scholar 

  • Konsman, J. P., Parnet, P., & Dantzer, R. (2002). Cytokine-induced sickness behaviour: Mechanisms and implications. Trends in Neurosciences, 25(3), 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Harris, R. J., Seal, C. J., & Okello, E. J. (2012). An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytotherapy Research, 26(1), 113–117.

    Article  PubMed  Google Scholar 

  • Lacosta, S., Merali, Z., & Anisman, H. (1999). Behavioral and neurochemical consequences of lipopolysaccharide in mice: Anxiogenic-like effects. Brain Research, 818(2), 291–303.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Yu, H., Zinna, R., Martin, K., Herbert, B., Liu, A., et al. (2011). Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. Journal of Pharmacology and Experimental Therapeutics, 336(3), 633–642.

    Article  PubMed  CAS  Google Scholar 

  • Liang, D., Li, F., Fu, Y., Cao, Y., Song, X., Wang, T., et al. (2014). Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation, 37(1), 214–222.

    Article  PubMed  CAS  Google Scholar 

  • Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling, Z., Gayle, D. A., Ma, S. Y., Lipton, J. W., Tong, C. W., Hong, J. S., & Carvey, P. M. (2002). In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Movement Disorders, 17(1), 116–124.

    Article  PubMed  Google Scholar 

  • Ling, Z., Zhu, Y., wai Tong, C., Snyder, J. A., Lipton, J. W., & Carvey, P. M. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Experimental Neurology, 199(2), 499–512.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25(4), 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S. W., & Murphy, W. J. (1993). Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proceedings of the National Academy of Sciences USA, 90(20), 9730–9734.

    Article  CAS  Google Scholar 

  • Lull, M. E., & Block, M. L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics, 7(4), 354–365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch, M. A. (2009). The multifaceted profile of activated microglia. Molecular Neurobiology, 40(2), 139–156.

    Article  PubMed  CAS  Google Scholar 

  • Maitra, R., Porter, M. A., Huang, S., & Gilmour, B. P. (2009). Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. Journal of Inflammation, 6(1), 15.

    Article  PubMed  Google Scholar 

  • Manchanda, S., & Kaur, G. (2017). Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complementary and Alternative Medicine, 17(1), 136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manchanda, S., Mishra, R., Singh, R., Kaur, T., & Kaur, G. (2017). Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: A mechanistic study. Molecular Neurobiology, 54(4), 3050–3061.

    Article  PubMed  CAS  Google Scholar 

  • Maroon, J. C., Bost, J. W., & Maroon, A. (2010). Natural anti-inflammatory agents for pain relief. Surgical Neurology International, 1, 80

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazón, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.

    Article  PubMed  CAS  Google Scholar 

  • Moon, Y. J., Lee, J. Y., Oh, M. S., Pak, Y. K., Park, K. S., Oh, T. H., & Yune, T. Y. (2012). Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. Journal of Neuroscience Research, 90(1), 243–256.

    Article  PubMed  CAS  Google Scholar 

  • Nagareddy, P. R., & Lakshmana, M. (2006). Withania somnifera improves bone calcification in calcium-deficient ovariectomized rats. Journal of Pharmacy and Pharmacology, 58(4), 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Narinderpal, K., Junaid, N., & Raman, B. (2013). A Review on pharmacological profile of Withania somnifera (Ashwagandha). Research and Reviews: Journal of Botanical Sciences, 2, 6–14.

    Google Scholar 

  • Oh, J. H., Lee, T. J., Park, J. W., & Kwon, T. K. (2008). Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κB in RAW 264.7 cells. European Journal of Pharmacology, 599(1–3), 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y., & Kohsaka, S. (2000). Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. Journal of Cell Science, 113(17), 3073–3084.

    PubMed  CAS  Google Scholar 

  • Owens, T., Babcock, A. A., Millward, J. M., & Toft-Hansen, H. (2005). Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Research Reviews, 48(2), 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. J., Gaynor, R. B., & Kwak, Y. T. (2003). Heat shock protein 27 association with the IκB kinase complex regulates tumor necrosis factor α-induced NF-κB activation. Journal of Biological Chemistry, 278(37), 35272–35278.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. Y., Jin, M. L., Kim, Y. H., Kim, Y., & Lee, S. J. (2012). Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. International Immunopharmacology, 14(1), 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Pietersma, A., Tilly, B. C., Gaestel, M., de Jong, N., Lee, J. C., Koster, J. F., & Sluiter, W. (1997). p38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level. Biochemical and Biophysical Research Communications, 230(1), 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Pratte, M. A., Nanavati, K. B., Young, V., & Morley, C. P. (2014). An alternative treatment for anxiety: A systematic review of human trial results reported for the Ayurvedic herb ashwagandha (Withania somnifera). The Journal of Alternative and Complementary Medicine, 20(12), 901–908.

    Article  PubMed  Google Scholar 

  • Purushotham, P. M., Kim, J. M., Jo, E. K., & Senthil, K. (2017). Withanolides against TLR4-activated innate inflammatory signalling pathways: A comparative computational and experimental study. Phytotherapy Research, 31(1), 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453–462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salim, S., Chugh, G., & Asghar, M. (2012). Inflammation in anxiety. Advances in Protein Chemistry and Structural Biology, 88, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S), 208–213.

    Article  Google Scholar 

  • Sinsimer, K. S., Gratacós, F. M., Knapinska, A. M., Lu, J., Krause, C. D., Wierzbowski, A. V., et al. (2008). Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Molecular and Cellular Biology, 28(17), 5223–5237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivamani, S., Joseph, B., & Kar, B. (2014). Anti-inflammatory activity of Withania somnifera leaf extract in stainless steel implant induced inflammation in adult zebrafish. Journal of Genetic Engineering and Biotechnology, 12(1), 1–6.

    Article  Google Scholar 

  • Solanki, I., Parihar, P., & Parihar, M. S. (2016). Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochemistry International, 95, 100–108.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, S. J., Mouihate, A., & Pittman, Q. J. (2007). Peripheral inflammation exacerbates damage after global ischemia independently of temperature and acute brain inflammation. Stroke, 38(5), 1570–1577.

    Article  PubMed  CAS  Google Scholar 

  • Sun, G. Y., Li, R., Cui, J., Hannink, M., Gu, Z., Fritsche, K. L., et al. (2016). Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. Neuromolecular Medicine, 18(3), 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Swiergiel, A. H., & Dunn, A. J. (2007). Effects of interleukin-1β and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacology Biochemistry and Behavior, 86(4), 651–659.

    Article  CAS  Google Scholar 

  • Udayakumar, R., Kasthurirengan, S., Mariashibu, T. S., Rajesh, M., Anbazhagan, V. R., Kim, S. C., et al. (2009). Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. International Journal of Molecular Sciences, 10(5), 2367–2382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ven Murthy, M. R., Ranjekar, K., Ramassamy, C., & Deshpande, M. (2010). Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Central Nervous System Agents in Medicinal Chemistry, 10(3), 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Wang, A., Al-Kuhlani, M., Johnston, S. C., Ojcius, D. M., Chou, J., & Dean, D. (2013). Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cellular Microbiology, 15(5), 779–794.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., Arakawa, T., Ueda, N., & Yamamoto, S. (1995). Transcriptional roles of nuclear factor B and nuclear factor-interleukin-6 in the tumor necrosis factor-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. Journal of Biological Chemistry, 270(52), 31315–31320.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, L., Wu, Y., Ren, X., Liu, Q., Wang, J., & Liu, X. (2014). Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia. Molecular and Cellular Biochemistry, 386(1–2), 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, K. W., Wang, S., Dong, X., Jiang, Y., & Tu, P. F. (2014). Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine, 21(3), 298–306.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, K. W., Zhang, T., Fu, H., Liu, G. X., & Wang, X. M. (2012). Modified Wu-Zi-Yan-Zong prescription, a traditional Chinese polyherbal formula, suppresses lipopolysaccharide-induced neuroinflammatory processes in rat astrocytes via NF-κB and JNK/p38 MAPK signaling pathways. Phytomedicine, 19(2), 122–129.

    Article  PubMed  Google Scholar 

  • Zhu, L. H., Bi, W., Qi, R. B., Wang, H. D., & Lu, D. X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. International Journal of Neuroscience, 121(6), 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Zubair Alam, M., Alam, Q., Amjad Kamal, M., Jiman-Fatani, A., Azhar, A. I., Azhar Khan, E., M., & Haque, A. (2017). Infectious Agents and neurodegenerative diseases: Exploring the links. Current Topics in Medicinal Chemistry, 17(12), 1390–1399.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current research work was funded by Department of Biotechnology (DBT), Government of India (GOI) to Prof. Gurcharan Kaur (Grant No: BT/PR12200/MED/30/1439/2014). Muskan Gupta is thankful to Council of Scientific and Industrial Research (CSIR), India for the fellowship. Infrastructure provided by University Grants Commission (UGC), India under UPE and CPEPA schemes and Department of Biotechnology (DBT), India under DISC facility is highly acknowledged. Shaffi Manchanda, Taranjeet Kaur, Anuradha Sharma, Harpal Singh, and Manpreet Kaur are deeply acknowledged for their help and support during experimental study. The funding source had no role in study design; collection, analysis, and interpretation of data; in writing of report; and in decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurcharan Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures of animal handling and experiments were conducted in accordance with the guidelines laid down by the Institutional Animal Ethical Committee (IAEC) of Guru Nanak Dev University, Amritsar, Punjab, India (Registration number: 226/CPCSEA) and that the studies have been approved by Institutional Animal Ethical Committee (IAEC) of Guru Nanak Dev University, Amritsar, Punjab, India (226/CPCSEA/2015/18). This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Kaur, G. Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation. Neuromol Med 20, 343–362 (2018). https://doi.org/10.1007/s12017-018-8497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-018-8497-7

Keywords

Navigation