Skip to main content
Log in

Purine Biosynthesis Enzymes in Hippocampal Neurons

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Despite reports implicating disrupted purine metabolism in causing a wide spectrum of neurological defects, the mechanistic details of purine biosynthesis in neurons are largely unknown. As an initial step in filling that gap, we examined the expression and subcellular distribution of three purine biosynthesis enzymes (PFAS, PAICS and ATIC) in rat hippocampal neurons. Using immunoblotting and high-resolution light and electron microscopic analysis, we find that all three enzymes are broadly distributed in hippocampal neurons with pools of these enzymes associated with mitochondria. These findings suggest a potential link between purine metabolism and mitochondrial function in neurons and provide an impetus for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PFAS:

Phosphoribosylformylglycinamidine synthase

PAICS:

Phosphoribosyl aminoimidazole succinocarboxamide synthetase

ATIC:

5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase

References

  • An, S., Kumar, R., Sheets, E. D., & Benkovic, S. J. (2008). Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science, 320(5872), 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, G. J., Torricelli, J. R., Evege, E. K., & Price, P. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. Journal of Neuroscience Research, 35(5), 567–576.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan, J. M., & Hartman, S. C. (1959). Enzymic reactions in the synthesis of the purines. In F. F. Ford (Ed.), Advances in Enzymology and Related Areas of Molecular Biology (pp. 199–261). London: Wiley.

    Google Scholar 

  • Endo, T., & Kohda, D. (2002). Functions of outer membrane receptors in mitochondrial protein import. Biochimica et Biophysica Acta, 1592(1), 3–14.

    Article  CAS  PubMed  Google Scholar 

  • French, J. B., Jones, S. A., Deng, H., Pedley, A. M., Kim, D., Chan, C. Y., et al. (2016). Spatial colocalization and functional link of purinosomes with mitochondria. Science, 351(6274), 733–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg, G. R., & Jaenicke, L. (1957). On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. In G. E. W. Wolstenholme & C. M. O’Connor (Eds.), Ciba Foundation Symposium—Chemistry and Biology of Purines (pp. 204–232). London: Wiley.

    Chapter  Google Scholar 

  • Hartman, S. C., & Buchanan, J. M. (1959). Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annual Review of Biochemistry, 28, 365–410.

    Article  CAS  PubMed  Google Scholar 

  • Hoogenraad, N. J., Ward, L. A., & Ryan, M. T. (2002). Import and assembly of proteins into mitochondria of mammalian cells. Biochimica et Biophysica Acta, 1592(1), 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Jaeken, J., & Van den Berghe, G. (1984). An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet, 2(8411), 1058–1061.

    CAS  PubMed  Google Scholar 

  • Kaech, S., & Banker, G. (2006). Culturing hippocampal neurons. Nature Protocols, 1, 2406–2415.

    Article  CAS  PubMed  Google Scholar 

  • Marie, S., Heron, B., Bitoun, P., Timmerman, T., Van Den Berghe, G., & Vincent, M. F. (2004). AICA-ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. American Journal of Human Genetics, 74(6), 1276–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson, M. P., Murrain, M., Guthrie, P. B., & Kater, S. B. (1989). Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. Journal of Neuroscience, 9, 3728–3740.

    CAS  PubMed  Google Scholar 

  • Murray, A. W. (1971). The biological significance of purine salvage. Annual Review of Biochemistry, 40, 811–826.

    Article  CAS  PubMed  Google Scholar 

  • Natsumeda, Y., Prajda, N., Donohue, J. P., Glover, J. L., & Weber, G. (1984). Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Research, 44(6), 2475–2479.

    CAS  PubMed  Google Scholar 

  • Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell, 134(1), 112–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedley, A. M., & Benkovic, S. J. (2017). A new view into the regulation of purine metabolism: The purinosome. Trends in Biochemical Sciences, 42(2), 141–154.

    Article  CAS  PubMed  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Hua, F., Yi, Z., Zhou, A., Ge, L., et al. (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167, 68–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petralia, R. S., & Wenthold, R. J. (1999). Immunocytochemistry of NMDA receptors. Methods in Molecular Biology, 128, 73–92.

    CAS  PubMed  Google Scholar 

  • Wang, X., Yang, K., Xie, Q., Wu, Q., Mack, S. C., Shi, Y., et al. (2017). Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 20, 661–673.

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka, T., Kondo, M., Honda, S., Iwahana, H., Moritani, M., Ii, S., et al. (1997). Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. Journal of Biological Chemistry, 272(28), 17719–17725.

    Article  CAS  PubMed  Google Scholar 

  • Yao, P. J., Manor, U., Petralia, R. S., Brose, R. D., Wu, R. T., Ott, C., et al. (2017). Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Molecular Biology of the Cell, 28(3), 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, P. J., Petralia, R. S., Ott, C., Wang, Y. X., Lippincott-Schwartz, J., & Mattson, M. P. (2015). Dendrosomatic sonic hedgehog signaling in hippocampal neurons regulates axon elongation. Journal of Neuroscience, 35, 16126–41611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. James P. Lata and Stephen J. Benkovic for discussions in the initial stage of this work. We also thank Dr. Fred E. Indig for assistance in confocal Airyscan imaging. This study was supported by the Intramural Research Programs of the National Institutes of Health, National Institute on Aging, and the National Institutes of Health, National Institute on Deafness and Other Communication Disorders. The Advanced Imaging Core code is ZIC DC000081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, J., Petralia, R.S., Wang, YX. et al. Purine Biosynthesis Enzymes in Hippocampal Neurons. Neuromol Med 19, 518–524 (2017). https://doi.org/10.1007/s12017-017-8466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8466-6

Keywords

Navigation