Skip to main content
Log in

Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis?

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Autism spectrum disorder is a heterogeneous disease, and numerous alterations of gene expression come into play to attempt to explain potential molecular and pathophysiological causes. Abnormalities of brain development and connectivity associated with alterations in cytoskeletal rearrangement, neuritogenesis and elongation of axons and dendrites might represent or contribute to the structural basis of autism pathology. Slit/Robo signaling regulates cytoskeletal remodeling related to axonal and dendritic branching. Components of its signaling pathway (ABL and Cdc42) are suspected to be molecular bases of alterations of normal development. The present review describes the most important mechanisms underlying neuritogenesis, axon pathfinding and the role of GTPases in neurite outgrowth, with special emphasis on alterations associated with autism spectrum disorders. On the basis of analysis of publicly available microarray data, potential biomarkers of autism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alter, M. D., Kharkar, R., Ramsey, K. E., Craig, D. W., Melmed, R. D., Grebe, T. A., et al. (2011). Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One, 6(2), e16715.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auer, M., Schweigreiter, R., Hausott, B., Thongrong, S., Höltje, M., Just, I., et al. (2012). Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons. Frontiers in Cellular Neuroscience, 6, 43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billeci, L., Calderoni, S., Tosetti, M., Catani, M., & Muratori, F. (2012). White matter connectivity in children with autism spectrum disorders: A tract-based spatial statistics study. BMC Neurology, 12, 148.

    Article  PubMed Central  PubMed  Google Scholar 

  • Birnbaum, R., Jaffe, A. E., Hyde, T. M., Kleinman, J. E., & Weinberger, D. R. (2014). Prenatal expression patterns of genes associated with neuropsychiatric disorders. American Journal of Psychiatry, 171(7), 758–767.

    Article  PubMed Central  PubMed  Google Scholar 

  • Burton, E. A., Oliver, T. N., & Pendergast, A. M. (2005). Abl kinases regulate actin comet tail elongation via an N-WASP-dependent pathway. Molecular and Cellular Biology, 25(20), 8834–8843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll, D., Hallett, V., McDougle, C. J., Aman, M. G., McCracken, J. T., Tierney, E., et al. (2014). Examination of aggression and self-injury in children with autism spectrum disorders and serious behavioral problems. Child and Adolescent Psychiatric Clinics of North America, 23(1), 57–72.

    Article  PubMed Central  PubMed  Google Scholar 

  • Castermans, D., Volders, K., Crepel, A., Backx, L., De Vos, R., Freson, K., et al. (2010). SCAMP5, NBEA and AMISYN: Three candidate genes for autism involved in secretion of large dense-core vesicles. Human Molecular Genetics, 19(7), 1368–1378.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y. C., Tien, S. C., Tien, H. F., Zhang, H., Bokoch, G. M., & Chang, Z. F. (2009). p210 (Bcr-Abl) desensitizes Cdc42 GTPase signaling for SDF-1alpha-directed migration in chronic myeloid leukemia cells. Oncogene, 28(46), 4105–4115.

    Article  CAS  PubMed  Google Scholar 

  • Corvin, A. P. (2010). Neuronal cell adhesion genes: Key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders?. Cell Adhesion and Migration, 4(4), 511–514.

    Article  PubMed Central  PubMed  Google Scholar 

  • Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290(3), 337–344.

    Article  PubMed  Google Scholar 

  • da Silva, J. S., & Dotti, C. G. (2002). Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nature Reviews Neuroscience, 3(9), 694–704.

    Article  PubMed  Google Scholar 

  • Dehmelt, L., & Halpain, S. (2004). Actin and microtubules in neurite initiation: Are MAPs the missing link? Journal of Neurobiology, 58(1), 18–33.

    Article  CAS  PubMed  Google Scholar 

  • Dehmelt, L., Nalbant, P., Steffen, W., & Halpain, S. (2006). A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation. Brain Cell Biology, 35(1), 39–56.

    Article  CAS  PubMed  Google Scholar 

  • Dent, E. W., Gupton, S. L., & Gertler, F. B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harbor Perspectives in Biology, 3(3), a001800.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dotti, C. G., Sullivan, C. A., & Banker, G. A. (1988). The establishment of polarity by hippocampal neurons in culture. Journal of Neuroscience, 8(4), 1454–1468.

    CAS  PubMed  Google Scholar 

  • Drees, F., & Gertler, F. B. (2008). Ena/VASP: proteins at the tip of the nervous system. Current Opinion in Neurobiology, 18(1), 53–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards, T. J., Sherr, E. H., Barkovich, A. J., & Richards, L. J. (2014). Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain, 137(6), 1579–1613.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldberg, D., Borojevic, R., Anderson, M., Chen, J. J., Gershon, M. D., & Ratcliffe, E. M. (2013). Slit/Robo-mediated chemorepulsion of vagal sensory axons in the fetal gut. Developmental Dynamics, 242(1), 9–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Govek, E. E., Newey, S. E., & Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes and Development, 19(1), 1–49.

    Article  CAS  PubMed  Google Scholar 

  • Gregg, J. P., Lit, L., Baron, C. A., Hertz-Picciotto, I., Walker, W., Davis, R. A., et al. (2008). Gene expression changes in children with autism. Genomics, 91(1), 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Grice, D. E., & Buxbaum, J. D. (2006). The genetics of autism spectrum disorders. NeuroMolecular Medicine, 8(4), 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Grosshans, B. L., Ortiz, D., & Novick, P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11821–11827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall, A., & Lalli, G. (2010). Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harbor Perspectives in Biology, 2(2), a001818.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammond, R., Vivancos, V., Naeem, A., Chilton, J., Mambetisaeva, E., Andrews, W., et al. (2005). Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development, 132(20), 4483–4495.

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa, N., Niwa, S., & Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 68(4), 610–638.

    Article  CAS  PubMed  Google Scholar 

  • Horgan, C. P., & McCaffrey, M. W. (2011). Rab GTPases and microtubule motors. Biochemical Society Transactions, 39(5), 1202–1206.

    Article  CAS  PubMed  Google Scholar 

  • Jou, R. J., Mateljevic, N., Kaiser, M. D., Sugrue, D. R., Volkmar, F. R., & Pelphrey, K. A. (2011). Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. American Journal of Neuroradiology, 32(9), 1607–1613.

    Article  CAS  PubMed  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(8), 1811–1821.

    Article  PubMed  Google Scholar 

  • Kollins, K. M., Bell, R. L., Butts, M., & Withers, G. S. (2009). Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Development, 4, 26.

    Article  PubMed Central  PubMed  Google Scholar 

  • Korey, C. A., & Van Vactor, D. (2000). From the growth cone surface to the cytoskeleton: one journey, many paths. Journal of Neurobiology, 44(2), 184–193.

    Article  CAS  PubMed  Google Scholar 

  • Kozma, R., Sarner, S., Ahmed, S., & Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Molecular and Cellular Biology, 17(3), 1201–1211.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krause, M., Leslie, J. D., Stewart, M., Lafuente, E. M., Valderrama, F., Jagannathan, R., et al. (2004). Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Developmental Cell, 7(4), 571–583.

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski, A. V., Rubinson, D. A., Dent, E. W., Edward van Veen, J., Leslie, J. D., Zhang, J., et al. (2007). Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron, 56(3), 441–455.

    Article  CAS  PubMed  Google Scholar 

  • Lebrand, C., Dent, E. W., Strasser, G. A., Lanier, L. M., Krause, M., Svitkina, T. M., et al. (2004). Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron, 42(1), 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Lepagnol-Bestel, A. M., Maussion, G., Boda, B., Cardona, A., Iwayama, Y., Delezoide, A. L., et al. (2008). SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Molecular Psychiatry, 13(4), 385–397.

    Article  CAS  PubMed  Google Scholar 

  • Major, D. L., & Brady-Kalnay, S. M. (2007). Rho GTPases regulate PTPµ-mediated nasal neurite outgrowth and temporal repulsion of retinal ganglion cell neurons. Molecular and Cellular Neuroscience, 34(3), 453–467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Márquez, C., Poirier, G. L., Cordero, M. I., Larsen, M. H., Groner, A., Marquis, J., et al. (2013). Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Translational Psychiatry, 3, e216.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24(1), 16–31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mercati, O., Danckaert, A., André-Leroux, G., Bellinzoni, M., Gouder, L., Watanabe, K., et al. (2013). Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biology Open, 2(3), 324–334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millard, T. H., Sharp, S. J., & Machesky, L. M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochemical Journal, 380(1), 1–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moughamian, A. J., & Holzbaur, E. L. (2012). Dynactin is required for transport initiation from the distal axon. Neuron, 74(2), 331–343.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S., & Holzbaur, E. L. (2013). Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. Journal of Neuroscience, 33(32), 13190–13203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray, A., Naeem, A., Barnes, S. H., Drescher, U., & Guthrie, S. (2010). Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Development, 5, 16.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oblander, S. A., & Brady-Kalnay, S. M. (2010). Distinct PTPµ-associated signaling molecules differentially regulate neurite outgrowth on E-, N-, and R-cadherin. Molecular and Cellular Neuroscience, 44(1), 78–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paemka, L., Mahajan, V. B., Skeie, J. M., Sowers, L. P., Ehaideb, S. N., Gonzalez-Alegre, P., et al. (2013). PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One, 8(12), e80737.

    Article  PubMed Central  PubMed  Google Scholar 

  • Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246.

    Article  PubMed Central  PubMed  Google Scholar 

  • Piton, A., Gauthier, J., Hamdan, F. F., Lafrenière, R. G., Yang, Y., Henrion, E., et al. (2011). Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Molecular Psychiatry, 16(8), 867–880.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polleux, F., & Snider, W. (2010). Initiating and growing an axon. Cold Spring Harbor Perspectives in Biology, 2(4), a001925.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pommereit, D., & Wouters, F. S. (2007). An NGF-induced Exo70-TC10 complex locally antagonizes Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. Journal of Cell Science, 120(15), 2694–2705.

    Article  CAS  PubMed  Google Scholar 

  • Prokop, A. (2013). The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Development, 8, 17.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., & Kirschner, M. W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Schaer, M., Ottet, M. C., Scariati, E., Dukes, D., Franchini, M., Eliez, S., & Glaser, B. (2013). Decreased frontal gyrification correlates with altered connectivity in children with autism. Frontiers in Human Neuroscience, 7, 750.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, L. G., & Li, R. (2004). Actin polymerization: Riding the wave. Current Biology, 14(3), R109–R111.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y. Y., Ye, M., Li, L., Liu, C., Pan, J., Liu, W. W., et al. (2013). KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8. Journal of Neuroscience, 33(45), 17884–17896.

    Article  CAS  PubMed  Google Scholar 

  • Tasaka, G., Negishi, M., & Oinuma, I. (2012). Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin. Journal of Neuroscience, 32(24), 8293–8305.

    Article  CAS  PubMed  Google Scholar 

  • Thies, E., & Davenport, R. W. (2003). Independent roles of Rho-GTPases in growth cone and axonal behavior. Journal of Neurobiology, 54(2), 358–369.

    Article  CAS  PubMed  Google Scholar 

  • Van Maldergem, L., Hou, Q., Kalscheuer, V. M., Rio, M., Doco-Fenzy, M., Medeira, A., et al. (2013). Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Human Molecular Genetics, 22(16), 3306–3314.

    Article  PubMed Central  PubMed  Google Scholar 

  • Villarroel-Campos, D., Gastaldi, L., Conde, C., Caceres, A., & Gonzalez-Billault, C. (2014). Rab-mediated trafficking role in neurite formation. Journal of Neurochemistry, 129(2), 240–248.

    Article  CAS  PubMed  Google Scholar 

  • Volders, K., Nuytens, K., & Creemers, J. W. (2011). The autism candidate gene neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Current Molecular Medicine, 11(3), 204–217.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. Z., Ibrahim, L. A., Kim, Y. J., Gibson, D. A., Leung, H. C., Yuan, W., et al. (2013). Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. Journal of Neuroscience, 33(30), 12242–12254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams, E. L., & Casanova, M. F. (2011). Above genetics: lessons from cerebral development in autism. Translational Neuroscience, 2(2), 106–120.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolff, J. J., & Piven, J. (2014). Neurodevelopmental disorders: Accelerating progress in autism through developmental research. Nature Reviews Neurology, 10(8), 431–432.

    Article  PubMed  Google Scholar 

  • Ypsilanti, A. R., Zagar, Y., & Chédotal, A. (2010). Moving away from the midline: new developments for Slit and Robo. Development, 137(12), 1939–1952.

    Article  CAS  PubMed  Google Scholar 

  • Zeidán-Chuliá, F., de Oliveira, B. H., Salmina, A. B., Casanova, M. F., Gelain, D. P., Noda, M., et al. (2014). Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death and Disease, 5, e1250.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., et al. (2014). Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17(3), 400–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Slovak Research and Development Agency projects APVV-0253-10 and APVV-0254-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakos, J., Bacova, Z., Grant, S.G. et al. Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis?. Neuromol Med 17, 297–304 (2015). https://doi.org/10.1007/s12017-015-8357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8357-7

Keywords

Navigation