Skip to main content

Advertisement

Log in

Direct Effect of Bevacizumab on Glioblastoma Cell Lines In Vitro

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Bevacizumab is a humanized monoclonal antibody directed against the pro-angiogenic factor vascular and endothelial growth factor-A (VEGF-A) used in the treatment of glioblastomas. Although most patients respond initially to this treatment, studies have shown that glioblastomas eventually recur. Several non-mutually exclusive theories based on the anti-angiogenic effect of bevacizumab have been proposed to explain these mechanisms of resistance. In this report, we studied whether bevacizumab can act directly on malignant glioblastoma cells. We observe changes in the expression profiles of components of the VEGF/VEGF-R pathway and in the response to a VEGF-A stimulus following bevacizumab treatment. In addition, we show that bevacizumab itself acts on glioblastoma cells by activating the Akt and Erks survival signaling pathways. Bevacizumab also enhances proliferation and invasiveness of glioblastoma cells in hyaluronic acid hydrogel. We propose that the paradoxical effect of bevacizumab on glioblastoma cells could be due to changes in the VEGF-A-dependent autocrine loop as well as in the intracellular survival pathways, leading to the enhancement of tumor aggressiveness. Investigation of how bevacizumab interacts with glioblastoma cells and the resulting downstream signaling pathways will help targeting populations of resistant glioblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

ECM:

Extracellular matrix

HA:

Hyaluronic acid

IgG1:

Immunoglobulin G1

PlGF:

Placental growth factor

VEGF:

Vascular and endothelial growth factor

References

  • Cao, Y., Zhong, W., & Sun, Y. (2009). Improvement of antiangiogenic cancer therapy by understanding the mechanisms of angiogenic factor interplay and drug resistance. Seminars in Cancer Biology, 19(5), 338–343. doi:10.1016/j.semcancer.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R., & Kettenmann, H. (2012). The brain tumor microenvironment. Glia, 60(3), 502–514.

    Article  PubMed  Google Scholar 

  • Chauzy, C., Delpech, B., Olivier, A., Bastard, C., Girard, N., Courel, M. N., Creissard, P. (1992). Establishment and characterisation of a human glioma cell line. European journal of cancer (Oxford, England: 1990), 28A(6–7), 1129–1134.

  • Coquerel, B., Poyer, F., Torossian, F., Dulong, V., Bellon, G., Dubus, I., et al. (2009). Elastin-derived peptides: Matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia, 57(16), 1716–1726. doi:10.1002/glia.20884.

    Article  PubMed  Google Scholar 

  • David, L., Dulong, V., Le Cerf, D., Cazin, L., Lamacz, M., & Vannier, J.-P. (2008). Hyaluronan hydrogel: An appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomaterialia, 4(2), 256–263. doi:10.1016/j.actbio.2007.08.012.

    Article  CAS  PubMed  Google Scholar 

  • David, L., Dulong, V., Le Cerf, D., Chauzy, C., Norris, V., Delpech, B., et al. (2004). Reticulated hyaluronan hydrogels: A model for examining cancer cell invasion in 3D. Matrix Biology: Journal of the International Society for Matrix Biology, 23(3), 183–193. doi:10.1016/j.matbio.2004.05.005.

    Article  CAS  Google Scholar 

  • De Groot, J. F., Fuller, G., Kumar, A. J., Piao, Y., Eterovic, K., Ji, Y., et al. (2010). Tumor invasion after treatment of glioblastoma with bevacizumab: Radiographic and pathologic correlation in humans and mice. Neuro-oncology, 12(3), 233–242. doi:10.1093/neuonc/nop027.

    Article  PubMed Central  PubMed  Google Scholar 

  • DeAngelis, L. M. (2001). Brain tumors. The New England journal of medicine, 344(2), 114–123. doi:10.1056/NEJM200101113440207.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, L. M., & Hicklin, D. J. (2008). Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14(20), 6371–6375. doi:10.1158/1078-0432.CCR-07-5287.

    Article  CAS  Google Scholar 

  • Fan, F., Samuel, S., Gaur, P., Lu, J., Dallas, N. A., Xia, L., et al. (2011). Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration. British Journal of Cancer, 104(8), 1270–1277. doi:10.1038/bjc.2011.81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrara, N. (2009). VEGF-A: A critical regulator of blood vessel growth. European Cytokine Network, 20(4), 158–163. doi:10.1684/ecn.2009.0170.

    CAS  PubMed  Google Scholar 

  • Ferrara, N. (2010). Binding to the extracellular matrix and proteolytic processing: Two key mechanisms regulating vascular endothelial growth factor action. Molecular Biology of the Cell, 21(5), 687–690. doi:10.1091/mbc.E09-07-0590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrara, N., Hillan, K. J., & Novotny, W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochemical and Biophysical Research Communications, 333(2), 328–335. doi:10.1016/j.bbrc.2005.05.132.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., et al. (2007). Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell, 131(3), 463–475. doi:10.1016/j.cell.2007.08.038.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285(21), 1182–1186. doi:10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, H. S., Prados, M. D., Wen, P. Y., Mikkelsen, T., Schiff, D., Abrey, L. E., et al. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(28), 4733–4740. doi:10.1200/JCO.2008.19.8721.

    Article  CAS  Google Scholar 

  • Galas, L., Garnier, M., & Lamacz, M. (2000). Calcium waves in frog melanotrophs are generated by intracellular inactivation of TTX-sensitive membrane Na+ channel. Molecular and Cellular Endocrinology, 170(1–2), 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Grau, S., Thorsteinsdottir, J., von Baumgarten, L., Winkler, F., Tonn, J.-C., & Schichor, C. (2011). Bevacizumab can induce reactivity to VEGF-C and -D in human brain and tumour derived endothelial cells. Journal of Neuro-oncology, 104(1), 103–112. doi:10.1007/s11060-010-0480-6.

    Article  CAS  PubMed  Google Scholar 

  • Hoelzinger, D. B., Demuth, T., & Berens, M. E. (2007). Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. Journal of the National Cancer Institute, 99(21), 1583–1593. doi:10.1093/jnci/djm187.

    Article  CAS  PubMed  Google Scholar 

  • Hong, X., Jiang, F., Kalkanis, S. N., Zhang, Z. G., Zhang, X.-P., DeCarvalho, A. C., et al. (2006). SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Letters, 236(1), 39–45. doi:10.1016/j.canlet.2005.05.011.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, A. P., Timmerman, M. P., Bagshaw, C. R., & Ashley, C. C. (1987). The kinetics of calcium binding to fura-2 and indo-1. FEBS Letters, 216(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Keunen, O., Johansson, M., Oudin, A., Sanzey, M., Rahim, S. A. A., Fack, F., et al. (2011). Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3749–3754. doi:10.1073/pnas.1014480108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knizetova, P., Darling, J. L., & Bartek, J. (2008a). Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. Journal of Cellular and Molecular Medicine, 12(1), 111–125. doi:10.1111/j.1582-4934.2007.00153.x.

    Article  CAS  PubMed  Google Scholar 

  • Knizetova, P., Ehrmann, J., Hlobilkova, A., Vancova, I., Kalita, O., Kolar, Z., & Bartek, J. (2008b). Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell cycle (Georgetown, Tex.), 7(16), 2553–2561.

  • Kwiatkowska, A., & Symons, M. (2013). Signaling determinants of glioma cell invasion. Advances in Experimental Medicine and Biology, 986, 121–141. doi:10.1007/978-94-007-4719-7_7.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D., & Iruela-Arispe, M. L. (2005). Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. The Journal of Cell Biology, 169(4), 681–691. doi:10.1083/jcb.200409115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J., Lee, J., Yu, H., Choi, K., & Choi, C. (2011). Differential dependency of human cancer cells on vascular endothelial growth factor-mediated autocrine growth and survival. Cancer Letters, 309(2), 145–150. doi:10.1016/j.canlet.2011.05.026.

    Article  CAS  PubMed  Google Scholar 

  • Lucio-Eterovic, A. K., Piao, Y., & de Groot, J. F. (2009). Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(14), 4589–4599. doi:10.1158/1078-0432.CCR-09-0575.

    Article  CAS  Google Scholar 

  • Mahesparan, R., Read, T.-A., Lund-Johansen, M., Skaftnesmo, K. O., Bjerkvig, R., & Engebraaten, O. (2003). Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathologica, 105(1), 49–57. doi:10.1007/s00401-002-0610-0.

    CAS  PubMed  Google Scholar 

  • Masood, R., Cai, J., Zheng, T., Smith, D. L., Hinton, D. R., & Gill, P. S. (2001). Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood, 98(6), 1904–1913.

    Article  CAS  PubMed  Google Scholar 

  • Mellinghoff, I. K., Lassman, A. B., & Wen, P. Y. (2011). Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia, 59(8), 1205–1212. doi:10.1002/glia.21137.

    Article  PubMed  Google Scholar 

  • Miletic, H., Niclou, S. P., Johansson, M., & Bjerkvig, R. (2009). Anti-VEGF therapies for malignant glioma: Treatment effects and escape mechanisms. Expert Opinion on Therapeutic Targets, 13(4), 455–468. doi:10.1517/14728220902806444.

    Article  CAS  PubMed  Google Scholar 

  • Moreno Garcia, V., Basu, B., Molife, L. R., & Kaye, S. B. (2012). Combining antiangiogenics to overcome resistance: Rationale and clinical experience. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18(14), 3750–3761. doi:10.1158/1078-0432.CCR-11-1275.

    Article  CAS  Google Scholar 

  • Nakada, M., Nakada, S., Demuth, T., Tran, N. L., Hoelzinger, D. B., & Berens, M. E. (2007). Molecular targets of glioma invasion. Cellular and Molecular Life Sciences: CMLS, 64(4), 458–478. doi:10.1007/s00018-007-6342-5.

    Article  CAS  PubMed  Google Scholar 

  • Olsson, A.-K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling: In control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371. doi:10.1038/nrm1911.

    Article  CAS  PubMed  Google Scholar 

  • Plate, K. H., Scholz, A., & Dumont, D. J. (2012). Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathologica, 124(6), 763–775. doi:10.1007/s00401-012-1066-5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pollo, B. (2012). Pathological classification of brain tumors. The Quarterly Journal of Nuclear Medicine and Molecular Imaging: Official Publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of Radiopharmaceutical Chemistry and Biology, 56(2), 103–111.

    CAS  Google Scholar 

  • Rahman, R., Smith, S., Rahman, C., & Grundy, R. (2010). Antiangiogenic therapy and mechanisms of tumor resistance in malignant glioma. Journal of Oncology, 2010, 251231. doi:10.1155/2010/251231.

    Article  PubMed Central  PubMed  Google Scholar 

  • Red-Horse, K., Crawford, Y., Shojaei, F., & Ferrara, N. (2007). Endothelium-microenvironment interactions in the developing embryo and in the adult. Developmental Cell, 12(2), 181–194. doi:10.1016/j.devcel.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  • Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J. B., Janzer, R. C., et al. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology, 10(5), 459–466. doi:10.1016/S1470-2045(09)70025-7.

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai, G., Weller, M., Nabors, B., Picard, M., Reardon, D., Mikkelsen, T., et al. (2010). Targeting integrins in malignant glioma. Targeted Oncology, 5(3), 175–181. doi:10.1007/s11523-010-0156-3.

    Article  PubMed  Google Scholar 

  • Takano, S., Mashiko, R., Osuka, S., Ishikawa, E., Ohneda, O., & Matsumura, A. (2010). Detection of failure of bevacizumab treatment for malignant glioma based on urinary matrix metalloproteinase activity. Brain Tumor Pathology, 27(2), 89–94. doi:10.1007/s10014-010-0271-y.

    Article  CAS  PubMed  Google Scholar 

  • Tate, M. C., & Aghi, M. K. (2009). Biology of angiogenesis and invasion in glioma. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 6(3), 447–457. doi:10.1016/j.nurt.2009.04.001.

    Article  CAS  Google Scholar 

  • Thompson, E. M., Frenkel, E. P., & Neuwelt, E. A. (2011). The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology, 76(1), 87–93. doi:10.1212/WNL.0b013e318204a3af.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuettenberg, J., Friedel, C., & Vajkoczy, P. (2006). Angiogenesis in malignant glioma: A target for antitumor therapy? Critical Reviews in Oncology/Hematology, 59(3), 181–193. doi:10.1016/j.critrevonc.2006.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Videira, P. A., Piteira, A. R., Cabral, M. G., Martins, C., Correia, M., Severino, P., et al. (2011). Effects of bevacizumab on autocrine VEGF stimulation in bladder cancer cell lines. Urologia Internationalis, 86(1), 95–101. doi:10.1159/000321905.

    Article  CAS  PubMed  Google Scholar 

  • Vredenburgh, J. J., Desjardins, A., Herndon, J. E, 2nd, Dowell, J. M., Reardon, D. A., Quinn, J. A., et al. (2007). Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(4), 1253–1259. doi:10.1158/1078-0432.CCR-06-2309.

    Article  CAS  Google Scholar 

  • Wade, A., Robinson, A. E., Engler, J. R., Petritsch, C., James, C. D., & Phillips, J. J. (2013). Proteoglycans and their roles in brain cancer. The FEBS Journal, 280(10), 2399–2417. doi:10.1111/febs.12109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watkins, S., & Sontheimer, H. (2012). Unique biology of gliomas: Challenges and opportunities. Trends in Neurosciences, 35(9), 546–556. doi:10.1016/j.tins.2012.05.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wen, P. Y., & Kesari, S. (2008). Malignant gliomas in adults. The New England Journal of Medicine, 359(5), 492–507. doi:10.1056/NEJMra0708126.

    Article  CAS  PubMed  Google Scholar 

  • Xu, T., Chen, J., Lu, Y., & Wolff, J. E. (2010). Effects of bevacizumab plus irinotecan on response and survival in patients with recurrent malignant glioma: A systematic review and survival-gain analysis. BMC Cancer, 10, 252. doi:10.1186/1471-2407-10-252.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu, L., Duda, D. G., di Tomaso, E., Ancukiewicz, M., Chung, D. C., Lauwers, G. Y., et al. (2009). Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Research, 69(20), 7905–7910. doi:10.1158/0008-5472.CAN-09-2099.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamagishi, N., Teshima-Kondo, S., Masuda, K., Nishida, K., Kuwano, Y., Dang, D. T., et al. (2013). Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells. BMC Cancer, 13(1), 229. doi:10.1186/1471-2407-13-229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmermann, D. R., & Dours-Zimmermann, M. T. (2008). Extracellular matrix of the central nervous system: From neglect to challenge. Histochemistry and Cell Biology, 130(4), 635–653. doi:10.1007/s00418-008-0485-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Catherine Buquet, Wiem Khelil, Laure Klosek, and Elisabeth Legrand for their technical help. The authors are very grateful to Dr. Flore Gouel and Pr. Isabelle Dubus for fruitful discussions. T. Simon is recipient of a fellowship from the “Conseil Régional de Haute-Normandie.” A. Petit is recipient of a fellowship from “Ministère de l’Enseignement supérieur et de la Recherche”.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, T., Coquerel, B., Petit, A. et al. Direct Effect of Bevacizumab on Glioblastoma Cell Lines In Vitro. Neuromol Med 16, 752–771 (2014). https://doi.org/10.1007/s12017-014-8324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8324-8

Keywords

Navigation