Skip to main content

Advertisement

Log in

SUMO and Alzheimer’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and is the most common cause of dementia in the elderly. Histopathologically, AD features insoluble aggregates of two proteins in the brain, amyloid-β (Aβ) and the microtubule-associated protein tau, both of which have been linked to the small ubiquitin-like modifier (SUMO). A large body of research has elucidated many of the molecular and cellular pathways that underlie AD, including those involving the abnormal Aβ and tau aggregates. However, a full understanding of the etiology and pathogenesis of the disease has remained elusive. Consequently, there are currently no effective therapeutic options that can modify the disease progression and slow or stop the decline of cognitive functioning. As part of the effort to address this lacking, there needs a better understanding of the signaling pathways that become impaired under AD pathology, including the regulatory mechanisms that normally control those networks. One such mechanism involves SUMOylation, which is a post-translational modification (PTM) that is involved in regulating many aspects of cell biology and has also been found to have several critical neuron-specific roles. Early studies have indicated that the SUMO system is likely altered with AD-type pathology, which may impact Aβ levels and tau aggregation. Although still a relatively unexplored topic, SUMOylation will likely emerge as a significant factor in AD pathogenesis in ways which may be somewhat analogous to other regulatory PTMs such as phosphorylation. Thus, in addition to the upstream effects on tau and Aβ processing, there may also be downstream effects mediated by Aβ aggregates or other AD-related factors on SUMO-regulated signaling pathways. Multiple proteins that have functions relevant to AD pathology have been identified as SUMO substrates, including those involved in synaptic physiology, mitochondrial dynamics, and inflammatory signaling. Ongoing studies will determine how these SUMO-regulated functions in neurons and glial cells may be impacted by Aβ and AD pathology. Here, we present a review of the current literature on the involvement of SUMO in AD, as well as an overview of the SUMOylated proteins and pathways that are potentially dysregulated with AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G. D., Ruff, E., & Slutsky, I. (2009). Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience, 12(12), 1567–1576.

    PubMed  CAS  Google Scholar 

  • Akama, K. T., & Van Eldik, L. J. (2000). Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. Journal of Biological Chemistry, 275(11), 7918–7924.

    PubMed  CAS  Google Scholar 

  • Akar, C. A., & Feinstein, D. L. (2009). Modulation of inducible nitric oxide synthase expression by sumoylation. Journal of Neuroinflammation, 6, 12.

    PubMed  Google Scholar 

  • Alzheimer’s, A. (2012). Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 8(2), 131–168.

    Google Scholar 

  • Arendt, T. (2009). Synaptic degeneration in Alzheimer’s disease. [Review]. Acta Neuropathologica, 118(1), 167–179.

    PubMed  Google Scholar 

  • Babu, J. R., Geetha, T., & Wooten, M. W. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. Journal of Neurochemistry, 94(1), 192–203.

    PubMed  CAS  Google Scholar 

  • Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. [Research Support, Non-U.S. Gov’t Review]. Lancet, 377(9770), 1019–1031.

    Google Scholar 

  • Bateman, R. J., Aisen, P. S., De Strooper, B., Fox, N. C., Lemere, C. A., Ringman, J. M., et al. (2011). Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimer’s Research and Therapy, 3(1), 1.

    PubMed  Google Scholar 

  • Benilova, I., Karran, E., & De Strooper, B. (2012). The toxic Abeta oligomer and Alzheimer’s disease: An emperor in need of clothes. Nature Neuroscience, 15(3), 349–357.

    PubMed  CAS  Google Scholar 

  • Bo, L., Dawson, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., et al. (1994). Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Annals of Neurology, 36(5), 778–786.

    PubMed  CAS  Google Scholar 

  • Braschi, E., Zunino, R., & McBride, H. M. (2009). MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Reports, 10(7), 748–754.

    PubMed  CAS  Google Scholar 

  • Buee, L., & Delacourte, A. (1999). Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathology, 9(4), 681–693.

    PubMed  CAS  Google Scholar 

  • Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., et al. (1992). Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. Journal of Biological Chemistry, 267(1), 546–554.

    PubMed  CAS  Google Scholar 

  • Cerveny, K. L., Tamura, Y., Zhang, Z., Jensen, R. E., & Sesaki, H. (2007). Regulation of mitochondrial fusion and division. Trends in Cell Biology, 17(11), 563–569.

    PubMed  CAS  Google Scholar 

  • Chao, H. W., Hong, C. J., Huang, T. N., Lin, Y. L., & Hsueh, Y. P. (2008). SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. [Research Support, Non-U.S. Gov’t]. Journal of Cell Biology, 182(1), 141–155.

    PubMed  CAS  Google Scholar 

  • Chen, H., & Chan, D. C. (2009). Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human Molecular Genetics, 18(R2), R169–R176.

    PubMed  CAS  Google Scholar 

  • Cisse, M., Halabisky, B., Harris, J., Devidze, N., Dubal, D. B., Sun, B., et al. (2011). Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature, 469(7328), 47–52.

    PubMed  CAS  Google Scholar 

  • Citron, M. (2010). Alzheimer’s disease: Strategies for disease modification. [Review]. Nature Reviews Drug Discovery, 9(5), 387–398.

    PubMed  CAS  Google Scholar 

  • Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P., & Taylor, C. T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 986–991.

    PubMed  CAS  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923.

    PubMed  CAS  Google Scholar 

  • Corneveaux, J. J., Myers, A. J., Allen, A. N., Pruzin, J. J., Ramirez, M., Engel, A., et al. (2010). Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Human Molecular Genetics, 19(16), 3295–3301.

    PubMed  CAS  Google Scholar 

  • Costantini, C., Ko, M. H., Jonas, M. C., & Puglielli, L. (2007). A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. The Biochemical Journal, 407(3), 383–395.

    PubMed  CAS  Google Scholar 

  • Craig, T. J., Jaafari, N., Petrovic, M. M., Rubin, P. P., Mellor, J. R., & Henley, J. M. (2012). Homeostatic synaptic scaling is regulated by protein SUMOylation. The Journal of Biological Chemistry, 287(27), 22781–22788.

    Google Scholar 

  • Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., Haj, F., Ivanov, A., et al. (2007). Regulation of protein tyrosine phosphatase 1B by sumoylation. Nature Cell Biology, 9(1), 80–85.

    PubMed  CAS  Google Scholar 

  • David, D. C., Layfield, R., Serpell, L., Narain, Y., Goedert, M., & Spillantini, M. G. (2002). Proteasomal degradation of tau protein. Journal of Neurochemistry, 83(1), 176–185.

    PubMed  CAS  Google Scholar 

  • Davies, C. A., Mann, D. M., Sumpter, P. Q., & Yates, P. O. (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. Journal of the Neurological Sciences, 78(2), 151–164.

    PubMed  CAS  Google Scholar 

  • De Strooper, B., Iwatsubo, T., & Wolfe, M. S. (2012). Presenilins and gamma-secretase: Structure, function, and role in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a006304.

    PubMed  Google Scholar 

  • DeKosky, S. T., & Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Annals of Neurology, 27(5), 457–464.

    PubMed  CAS  Google Scholar 

  • Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5(5), 452–457.

    PubMed  CAS  Google Scholar 

  • Donkin, J. J., Stukas, S., Hirsch-Reinshagen, V., Namjoshi, D., Wilkinson, A., May, S., et al. (2010). ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. Journal of Biological Chemistry, 285(44), 34144–34154.

    PubMed  CAS  Google Scholar 

  • Dorval, V., & Fraser, P. E. (2006). Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. Journal of Biological Chemistry, 281(15), 9919–9924.

    PubMed  CAS  Google Scholar 

  • Dorval, V., & Fraser, P. E. (2007). SUMO on the road to neurodegeneration. Biochimica et Biophysica Acta, 1773(6), 694–706.

    PubMed  CAS  Google Scholar 

  • Dorval, V., Mazzella, M. J., Mathews, P. M., Hay, R. T., & Fraser, P. E. (2007). Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. The Biochemical Journal, 404(2), 309–316.

    PubMed  CAS  Google Scholar 

  • Dougherty, J. J., Wu, J., & Nichols, R. A. (2003). Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. Journal of Neuroscience, 23(17), 6740–6747.

    PubMed  CAS  Google Scholar 

  • Endoh, M., Maiese, K., & Wagner, J. (1994). Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Research, 651(1–2), 92–100.

    PubMed  CAS  Google Scholar 

  • Eun Jeoung, L., Sung Hee, H., Jaesun, C., Sung Hwa, S., Kwang Hum, Y., Min Kyoung, K., et al. (2008). Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier. Open Biochemistry Journal, 2, 67–76.

    PubMed  Google Scholar 

  • Feligioni, M., Nishimune, A., & Henley, J. M. (2009). Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. European Journal of Neuroscience, 29(7), 1348–1356.

    PubMed  Google Scholar 

  • Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C.-R., Arnoult, D., Keller, P. J., et al. (2009). SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. The FASEB Journal, 23(11), 3917–3927.

    CAS  Google Scholar 

  • Fitz, N. F., Cronican, A., Pham, T., Fogg, A., Fauq, A. H., Chapman, R., et al. (2010). Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. Journal of Neuroscience, 30(20), 6862–6872.

    PubMed  CAS  Google Scholar 

  • Galea, E., Feinstein, D. L., & Reis, D. J. (1992). Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10945–10949.

    PubMed  CAS  Google Scholar 

  • Ghisletti, S., Huang, W., Ogawa, S., Pascual, G., Lin, M. E., Willson, T. M., et al. (2007). Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Molecular Cell, 25(1), 57–70.

    PubMed  CAS  Google Scholar 

  • Giorgino, F., de Robertis, O., Laviola, L., Montrone, C., Perrini, S., McCowen, K. C., et al. (2000). The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1125–1130.

    PubMed  CAS  Google Scholar 

  • Gocke, C. B., Yu, H., & Kang, J. (2005). Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. Journal of Biological Chemistry, 280(6), 5004–5012.

    PubMed  CAS  Google Scholar 

  • Goedert, M., Spillantini, M. G., Cairns, N. J., & Crowther, R. A. (1992). Tau proteins of Alzheimer paired helical filaments: Abnormal phosphorylation of all six brain isoforms. Neuron, 8(1), 159–168.

    PubMed  CAS  Google Scholar 

  • Gowran, A., Murphy, C. E., & Campbell, V. A. (2009). Delta(9)-tetrahydrocannabinol regulates the p53 post-translational modifiers Murine double minute 2 and the Small Ubiquitin MOdifier protein in the rat brain. FEBS Letters, 583(21), 3412–3418.

    PubMed  CAS  Google Scholar 

  • Grilli, M., Lagomarsino, F., Zappettini, S., Preda, S., Mura, E., Govoni, S., et al. (2010). Specific inhibitory effect of amyloid-beta on presynaptic muscarinic receptor subtypes modulating neurotransmitter release in the rat nucleus accumbens. Neuroscience, 167(2), 482–489.

    PubMed  CAS  Google Scholar 

  • Grupe, A., Abraham, R., Li, Y., Rowland, C., Hollingworth, P., Morgan, A., et al. (2007). Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Human Molecular Genetics, 16(8), 865–873.

    PubMed  CAS  Google Scholar 

  • Guo, C., Hildick, K. L., Luo, J., Dearden, L., Wilkinson, K. A., & Henley, J. M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. The EMBO Journal, 32(11), 1514–1528.

    Google Scholar 

  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology, 8(2), 101–112.

    PubMed  CAS  Google Scholar 

  • Harder, Z., Zunino, R., & McBride, H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current Biology, 14(4), 340–345.

    PubMed  CAS  Google Scholar 

  • Heneka, M. T., Sastre, M., Dumitrescu-Ozimek, L., Hanke, A., Dewachter, I., Kuiperi, C., et al. (2005). Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 128(Pt 6), 1442–1453.

    PubMed  Google Scholar 

  • Heneka, M. T., Wiesinger, H., Dumitrescu-Ozimek, L., Riederer, P., Feinstein, D. L., & Klockgether, T. (2001). Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 60(9), 906–916.

    PubMed  CAS  Google Scholar 

  • Hewett, S. J., Corbett, J. A., McDaniel, M. L., & Choi, D. W. (1993). Interferon-gamma and interleukin-1 beta induce nitric oxide formation from primary mouse astrocytes. Neuroscience Letters, 164(1–2), 229–232.

    PubMed  CAS  Google Scholar 

  • Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., & Beyreuther, K. (1991). Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. Journal of Molecular Biology, 218(1), 149–163.

    PubMed  CAS  Google Scholar 

  • Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R. L., Atwood, C. S., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. The Journal of Neuroscience, 21(9), 3017–3023.

    PubMed  CAS  Google Scholar 

  • Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435.

    PubMed  CAS  Google Scholar 

  • Holtzman, D. M., Morris, J. C., & Goate, A. M. (2011a). Alzheimer’s disease: The challenge of the second century. Science Translational Medicine, 3(77), 77sr71.

    Google Scholar 

  • Holtzman, D. M., Morris, J. C., & Goate, A. M. (2011b). Alzheimer’s disease: The challenge of the second century. [Review]. Science Translational Medicine, 3(77), 77sr71.

    Google Scholar 

  • Hoppe, J. B., Rattray, M., Tu, H., Salbego, C. G., & Cimarosti, H. (2013). SUMO-1 conjugation blocks beta-amyloid-induced astrocyte reactivity. Neuroscience Letters, 546, 51–56.

    Google Scholar 

  • Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52(5), 831–843.

    PubMed  CAS  Google Scholar 

  • Hu, J., Akama, K. T., Krafft, G. A., Chromy, B. A., & Van Eldik, L. J. (1998). Amyloid-beta peptide activates cultured astrocytes: Morphological alterations, cytokine induction and nitric oxide release. Brain Research, 785(2), 195–206.

    PubMed  CAS  Google Scholar 

  • Jarrett, J. T., Berger, E. P., & Lansbury, P. T, Jr. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer’s disease. Biochemistry, 32(18), 4693–4697.

    PubMed  CAS  Google Scholar 

  • Jarrett, J. T., & Lansbury, P. T, Jr. (1993). Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73(6), 1055–1058.

    PubMed  CAS  Google Scholar 

  • Jiang, Q., Lee, C. Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., et al. (2008). ApoE promotes the proteolytic degradation of Abeta. Neuron, 58(5), 681–693.

    PubMed  CAS  Google Scholar 

  • Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., & Selkoe, D. J. (2011). Soluble amyloid {beta}-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5819–5824.

    PubMed  CAS  Google Scholar 

  • Johnson, E. S., & Gupta, A. A. (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 106(6), 735–744.

    PubMed  CAS  Google Scholar 

  • Kauwe, J. S., Wang, J., Mayo, K., Morris, J. C., Fagan, A. M., Holtzman, D. M., et al. (2009). Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid beta. Neurogenetics, 10(1), 13–17.

    PubMed  CAS  Google Scholar 

  • Khan, G. M., Tong, M., Jhun, M., Arora, K., & Nichols, R. A. (2010). Beta-Amyloid activates presynaptic alpha7 nicotinic acetylcholine receptors reconstituted into a model nerve cell system: Involvement of lipid rafts. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). The European Journal of Neuroscience, 31(5), 788–796.

    Google Scholar 

  • Kim, J., Basak, J. M., & Holtzman, D. M. (2009). The role of apolipoprotein E in Alzheimer’s disease. Neuron, 63(3), 287–303.

    PubMed  CAS  Google Scholar 

  • Koldamova, R. P., Lefterov, I. M., Staufenbiel, M., Wolfe, D., Huang, S., Glorioso, J. C., et al. (2005). The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. Journal of Biological Chemistry, 280(6), 4079–4088.

    PubMed  CAS  Google Scholar 

  • Lacor, P. N., Buniel, M. C., Chang, L., Fernandez, S. J., Gong, Y., Viola, K. L., et al. (2004). Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. Journal of Neuroscience, 24(45), 10191–10200.

    PubMed  CAS  Google Scholar 

  • Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27(4), 796–807.

    PubMed  CAS  Google Scholar 

  • Lane, R. F., Shineman, D. W., Steele, J. W., Lee, L. B., & Fillit, H. M. (2012). Beyond amyloid: The future of therapeutics for Alzheimer’s disease. Advances in Pharmacology, 64, 213–271.

    PubMed  CAS  Google Scholar 

  • Larson, M. E., & Lesne, S. E. (2012). Soluble Abeta oligomer production and toxicity. Journal of Neurochemistry, 120(Suppl 1), 125–139.

    PubMed  CAS  Google Scholar 

  • Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457(7233), 1128–1132.

    PubMed  CAS  Google Scholar 

  • Lee, S. C., Dickson, D. W., Liu, W., & Brosnan, C. F. (1993). Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. Journal of Neuroimmunology, 46(1–2), 19–24.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., Lee, J. H., & Rubinsztein, D. C. (2013). Tau degradation: The ubiquitin-proteasome system versus the autophagy-lysosome system. Progress in Neurobiology, 105, 49–59.

    PubMed  CAS  Google Scholar 

  • Lee, G. W., Melchior, F., Matunis, M. J., Mahajan, R., Tian, Q., & Anderson, P. (1998). Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. Journal of Biological Chemistry, 273(11), 6503–6507.

    PubMed  CAS  Google Scholar 

  • Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., & Selkoe, D. (2009). Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 62(6), 788–801.

    PubMed  CAS  Google Scholar 

  • Li, Y., Wang, H., Wang, S., Quon, D., Liu, Y. W., & Cordell, B. (2003). Positive and negative regulation of APP amyloidogenesis by sumoylation. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 259–264.

    PubMed  CAS  Google Scholar 

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21(21), 8370–8377.

    PubMed  CAS  Google Scholar 

  • Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795.

    PubMed  CAS  Google Scholar 

  • Loriol, C., Khayachi, A., Poupon, G., Gwizdek, C., & Martin, S. (2013). Activity-dependent regulation of the sumoylation machinery in rat hippocampal neurons. Biology of the Cell, 105(1), 30–45.

    PubMed  CAS  Google Scholar 

  • Manczak, M., Calkins, M. J., & Reddy, P. H. (2011). Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: Implications for neuronal damage. Human Molecular Genetics, 20(13), 2495–2509.

    PubMed  CAS  Google Scholar 

  • Mandelkow, E. M., & Mandelkow, E. (2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspectives in Medicine, 2(7), a006247.

    PubMed  Google Scholar 

  • Mandrekar-Colucci, S., Karlo, J. C., & Landreth, G. E. (2012). Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. Journal of Neuroscience, 32(30), 10117–10128.

    PubMed  CAS  Google Scholar 

  • Martin, S., Nishimune, A., Mellor, J. R., & Henley, J. M. (2007). SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 447(7142), 321–325.

    PubMed  CAS  Google Scholar 

  • Masliah, E., Mallory, M., Alford, M., DeTeresa, R., Hansen, L. A., McKeel, D. W, Jr, et al. (2001). Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology, 56(1), 127–129.

    PubMed  CAS  Google Scholar 

  • Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M., & Terry, R. (1994). Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neuroscience Letters, 174(1), 67–72.

    PubMed  CAS  Google Scholar 

  • Masters, C. L., & Selkoe, D. J. (2012). Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(6), a006262.

    PubMed  Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82(12), 4245–4249.

    PubMed  CAS  Google Scholar 

  • Mayeux, R., & Stern, Y. (2012). Epidemiology of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(8), a006239.

    Google Scholar 

  • Mc Donald, J. M., Savva, G. M., Brayne, C., Welzel, A. T., Forster, G., Shankar, G. M., et al. (2010). The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain, 133(Pt 5), 1328–1341.

    PubMed  Google Scholar 

  • McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., et al. (1999). Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46(6), 860–866.

    PubMed  CAS  Google Scholar 

  • McMillan, L. E., Brown, J. T., Henley, J. M., & Cimarosti, H. (2011). Profiles of SUMO and ubiquitin conjugation in an Alzheimer’s disease model. Neuroscience Letters, 502(3), 201–208.

    PubMed  CAS  Google Scholar 

  • Mishra, R. K., Jatiani, S. S., Kumar, A., Simhadri, V. R., Hosur, R. V., & Mittal, R. (2004). Dynamin interacts with members of the sumoylation machinery. Journal of Biological Chemistry, 279(30), 31445–31454.

    PubMed  CAS  Google Scholar 

  • Moller, H. J., & Graeber, M. B. (1998). The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. European Archives of Psychiatry and Clinical Neuroscience, 248(3), 111–122.

    PubMed  CAS  Google Scholar 

  • Moreno, H., Yu, E., Pigino, G., Hernandez, A. I., Kim, N., Moreira, J. E., et al. (2009). Synaptic transmission block by presynaptic injection of oligomeric amyloid beta. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5901–5906.

    PubMed  CAS  Google Scholar 

  • Mori, H., Kondo, J., & Ihara, Y. (1987). Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science, 235(4796), 1641–1644.

    PubMed  CAS  Google Scholar 

  • Mucke, L., & Selkoe, D. J. (2012). Neurotoxicity of amyloid beta-protein: Synaptic and network dysfunction. Cold Spring Harbor Perspectives in Medicine, 2(7), a006338.

    PubMed  Google Scholar 

  • Mura, E., Preda, S., Govoni, S., Lanni, C., Trabace, L., Grilli, M., et al. (2010). Specific neuromodulatory actions of amyloid-beta on dopamine release in rat nucleus accumbens and caudate putamen. Journal of Alzheimer’s Disease, 19(3), 1041–1053.

    PubMed  CAS  Google Scholar 

  • Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43(5), 436–441.

    PubMed  CAS  Google Scholar 

  • Nistico, R., Pignatelli, M., Piccinin, S., Mercuri, N. B., & Collingridge, G. (2012). Targeting synaptic dysfunction in Alzheimer’s disease therapy. Molecular Neurobiology, 46(3), 572–587.

    PubMed  CAS  Google Scholar 

  • Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Journal of Neuroscience Research, 75(6), 742–750.

    PubMed  CAS  Google Scholar 

  • Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nature Neuroscience, 13(7), 812–818.

    PubMed  CAS  Google Scholar 

  • Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., et al. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature, 437(7059), 759–763.

    PubMed  CAS  Google Scholar 

  • Pehar, M., & Puglielli, L. (2013). Lysine acetylation in the lumen of the ER: A novel and essential function under the control of the UPR. Biochimica et Biophysica Acta, 1833(3), 686–697.

    PubMed  CAS  Google Scholar 

  • Perry, G., Friedman, R., Shaw, G., & Chau, V. (1987). Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proceedings of the National Academy of Sciences of the United States of America, 84(9), 3033–3036.

    PubMed  CAS  Google Scholar 

  • Pountney, D. L., Huang, Y., Burns, R. J., Haan, E., Thompson, P. D., Blumbergs, P. C., et al. (2003). SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Experimental Neurology, 184(1), 436–446.

    PubMed  CAS  Google Scholar 

  • Preda, S., Govoni, S., Lanni, C., Racchi, M., Mura, E., Grilli, M., et al. (2008). Acute beta-amyloid administration disrupts the cholinergic control of dopamine release in the nucleus accumbens. Neuropsychopharmacology, 33(5), 1062–1070.

    PubMed  CAS  Google Scholar 

  • Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer’s disease. [Review]. The New England Journal of Medicine, 362(4), 329–344.

    PubMed  CAS  Google Scholar 

  • Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H., & Goldstein, S. A. (2005). Sumoylation silences the plasma membrane leak K + channel K2P1. Cell, 121(1), 37–47.

    PubMed  CAS  Google Scholar 

  • Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in molecular medicine, 14(2), 45.

    PubMed  CAS  Google Scholar 

  • Renner, M., Lacor, P. N., Velasco, P. T., Xu, J., Contractor, A., Klein, W. L., et al. (2010). Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron, 66(5), 739–754.

    PubMed  CAS  Google Scholar 

  • Riddell, D. R., Zhou, H., Comery, T. A., Kouranova, E., Lo, C. F., Warwick, H. K., et al. (2007). The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Molecular and Cellular Neuroscience, 34(4), 621–628.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Dargemont, C., & Hay, R. T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. Journal of Biological Chemistry, 276(16), 12654–12659.

    PubMed  CAS  Google Scholar 

  • Rui, H. L., Fan, E., Zhou, H. M., Xu, Z., Zhang, Y., & Lin, S. C. (2002). SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. Journal of Biological Chemistry, 277(45), 42981–42986.

    PubMed  CAS  Google Scholar 

  • Saitoh, H., & Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252–6258.

    PubMed  CAS  Google Scholar 

  • Sarge, K. D., & Park-Sarge, O. K. (2011). SUMO and its role in human diseases. [Research Support, N.I.H., Extramural Review]. International review of cell and molecular biology, 288, 167–183.

  • Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology, 68(18), 1501–1508.

    PubMed  CAS  Google Scholar 

  • Scheff, S. W., Price, D. A., Schmitt, F. A., & Mufson, E. J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 27(10), 1372–1384.

    PubMed  CAS  Google Scholar 

  • Scheibel, M. E., Lindsay, R. D., Tomiyasu, U., & Scheibel, A. B. (1975). Progressive dendritic changes in aging human cortex. Experimental Neurology, 47(3), 392–403.

    PubMed  CAS  Google Scholar 

  • Schweers, O., Schonbrunn-Hanebeck, E., Marx, A., & Mandelkow, E. (1994). Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. Journal of Biological Chemistry, 269(39), 24290–24297.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (1996). Amyloid beta-protein and the genetics of Alzheimer’s disease. Journal of Biological Chemistry, 271(31), 18295–18298.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81(2), 741–766.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298(5594), 789–791.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2008). Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behavioural Brain Research, 192(1), 106–113.

    PubMed  CAS  Google Scholar 

  • Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189.

    PubMed  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z., Stegmuller, J., Shirogane, T., Ge, Q., et al. (2006). A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science, 311(5763), 1012–1017.

    PubMed  CAS  Google Scholar 

  • Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. Journal of Neuroscience, 27(11), 2866–2875.

    PubMed  CAS  Google Scholar 

  • Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14(8), 837–842.

    Google Scholar 

  • Shimura, H., Schwartz, D., Gygi, S. P., & Kosik, K. S. (2004). CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. The Journal of Biological Chemistry, 279(6), 4869–4876.

    PubMed  CAS  Google Scholar 

  • Siddiqua, A., Luo, Y., Meyer, V., Swanson, M. A., Yu, X., Wei, G., et al. (2012). Conformational basis for asymmetric seeding barrier in filaments of three- and four-repeat tau. Journal of the American Chemical Society, 134(24), 10271–10278.

    PubMed  CAS  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8(8), 1051–1058.

    PubMed  CAS  Google Scholar 

  • Stine, W. B, Jr, Dahlgren, K. N., Krafft, G. A., & LaDu, M. J. (2003). In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. Journal of Biological Chemistry, 278(13), 11612–11622.

    PubMed  CAS  Google Scholar 

  • Sturchler, E., Galichet, A., Weibel, M., Leclerc, E., & Heizmann, C. W. (2008). Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. Journal of Neuroscience, 28(20), 5149–5158.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Ishida, M., Komano, H., & Takahashi, H. (2008). SUMO-1 immunoreactivity co-localizes with phospho-Tau in APP transgenic mice but not in mutant Tau transgenic mice. Neuroscience Letters, 441(1), 90–93.

    PubMed  CAS  Google Scholar 

  • Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(10), a006296.

    Google Scholar 

  • Tatham, M. H., Geoffroy, M. C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E. G., et al. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 10(5), 538–546.

    PubMed  CAS  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580.

    PubMed  CAS  Google Scholar 

  • Thompson, P. M., Hayashi, K. M., de Zubicaray, G., Janke, A. L., Rose, S. E., Semple, J., et al. (2003). Dynamics of gray matter loss in Alzheimer’s disease. Journal of Neuroscience, 23(3), 994–1005.

    PubMed  CAS  Google Scholar 

  • Tirard, M., Hsiao, H. H., Nikolov, M., Urlaub, H., Melchior, F., & Brose, N. (2012). In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 21122–21127.

    PubMed  CAS  Google Scholar 

  • Toledo, E. M., & Inestrosa, N. C. (2010). Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Molecular Psychiatry, 15(3), 272–285, 228.

    Google Scholar 

  • Um, J. W., & Chung, K. C. (2006). Functional modulation of parkin through physical interaction with SUMO-1. Journal of Neuroscience Research, 84(7), 1543–1554.

    PubMed  CAS  Google Scholar 

  • van Niekerk, E. A., Willis, D. E., Chang, J. H., Reumann, K., Heise, T., & Twiss, J. L. (2007). Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proceedings of the National Academy of Sciences of the United States of America, 104(31), 12913–12918.

    PubMed  Google Scholar 

  • Wallace, M. N., Geddes, J. G., Farquhar, D. A., & Masson, M. R. (1997). Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Experimental Neurology, 144(2), 266–272.

    PubMed  CAS  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535–539.

    PubMed  CAS  Google Scholar 

  • Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. Journal of Biological Chemistry, 275(8), 5626–5632.

    PubMed  CAS  Google Scholar 

  • Wang, X., Su, B., Lee, H. G., Li, X., Perry, G., Smith, M. A., et al. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. Journal of Neuroscience, 29(28), 9090–9103.

    PubMed  CAS  Google Scholar 

  • Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J., & Anwyl, R. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. Journal of Neuroscience, 24(13), 3370–3378.

    PubMed  CAS  Google Scholar 

  • Wang, J. Z., Xia, Y. Y., Grundke-Iqbal, I., & Iqbal, K. (2013). Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. Journal of Alzheimer’s Disease, 33(Suppl 1), S123–S139.

    PubMed  Google Scholar 

  • Weeraratna, A. T., Kalehua, A., Deleon, I., Bertak, D., Maher, G., Wade, M. S., et al. (2007). Alterations in immunological and neurological gene expression patterns in Alzheimer’s disease tissues. Experimental Cell Research, 313(3), 450–461.

    PubMed  CAS  Google Scholar 

  • Wei, W., Nguyen, L. N., Kessels, H. W., Hagiwara, H., Sisodia, S., & Malinow, R. (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nature Neuroscience, 13(2), 190–196.

    Google Scholar 

  • Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T, Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35(43), 13709–13715.

    PubMed  CAS  Google Scholar 

  • West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet, 344(8925), 769–772.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. A., Nakamura, Y., & Henley, J. M. (2010). Targets and consequences of protein SUMOylation in neurons. Brain Research Reviews, 64(1), 195–212.

    PubMed  CAS  Google Scholar 

  • Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine, 2(1), a006346.

    PubMed  Google Scholar 

  • Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., et al. (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature, 382(6593), 685–691.

    PubMed  CAS  Google Scholar 

  • Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., et al. (2005). Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280(7), 5892–5901.

    PubMed  CAS  Google Scholar 

  • Yang, Q. G., Wang, F., Zhang, Q., Xu, W. R., Chen, Y. P., & Chen, G. H. (2012). Correlation of increased hippocampal Sumo3 with spatial learning ability in old C57BL/6 mice. Neuroscience Letter, 518(2), 75–79.

    Google Scholar 

  • Yun, S. M., Cho, S. J., Song, J. C., Song, S. Y., Jo, S. A., Jo, C., et al. (2013). SUMO1 modulates Abeta generation via BACE1 accumulation. Neurobiology of Aging, 34(3), 650–662.

    Google Scholar 

  • Zelcer, N., Khanlou, N., Clare, R., Jiang, Q., Reed-Geaghan, E. G., Landreth, G. E., et al. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10601–10606.

    PubMed  CAS  Google Scholar 

  • Zhang, Y. Q., & Sarge, K. D. (2008). Sumoylation of amyloid precursor protein negatively regulates Abeta aggregate levels. Biochemical and Biophysical Research Communications, 374(4), 673–678.

    PubMed  CAS  Google Scholar 

  • Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., & McBride, H. M. (2007). The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. Journal of Cell Science, 120(Pt 7), 1178–1188.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues in the Fraser and Arancio laboratories for their helpful discussions. We also thank Drs. Moses Chao, Gilbert Di Paolo, Amy MacDermott, and Michael Shelanski for their critical feedback and input on early versions of parts of this manuscript. This work was funded by a National Institutes of Health grant NIH-NS049442 and Canadian Institutes of Health Research grant MOP-115056. Dr. Matsuzaki was supported by a Grant-in-Aid for Young Scientists B (23790224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ottavio Arancio or Paul Fraser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, L., Sakurai, M., Matsuzaki, S. et al. SUMO and Alzheimer’s Disease. Neuromol Med 15, 720–736 (2013). https://doi.org/10.1007/s12017-013-8257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8257-7

Keywords

Navigation