Skip to main content
Log in

Protein Sumoylation in Brain Development, Neuronal Morphology and Spinogenesis

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Small ubiquitin-like modifiers (SUMOs) are polypeptides resembling ubiquitin that are covalently attached to specific lysine residue of target proteins through a specific enzymatic pathway. Sumoylation is now seen as a key posttranslational modification involved in many biological processes, but little is known about how this highly dynamic protein modification is regulated in the brain. Disruption of the sumoylation enzymatic pathway during the embryonic development leads to lethality revealing a pivotal role for this protein modification during development. The main aim of this review is to briefly describe the SUMO pathway and give an overview of the sumoylation regulations occurring in brain development, neuronal morphology and synapse formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abed, M., Barry, K. C., Kenyagin, D., et al. (2011). Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression. EMBO Journal, 30, 1289–1301.

    PubMed  CAS  Google Scholar 

  • Alkuraya, F. S., Saadi, I., Lund, J. J., Turbe-Doan, A., Morton, C. C., & Maas, R. L. (2006). SUMO1 haploinsufficiency leads to cleft lip and palate. Science, 313, 1751.

    PubMed  Google Scholar 

  • Aslanukov, A., Bhowmick, R., Guruju, M., et al. (2006). RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism. PLoS Genetics, 2, e177.

    PubMed  Google Scholar 

  • Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., & Lima, C. D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell, 108, 345–356.

    PubMed  CAS  Google Scholar 

  • Blackshaw, S., Harpavat, S., Trimarchi, J., et al. (2004). Genomic analysis of mouse retinal development. PLoS Biology, 2, E247.

    PubMed  Google Scholar 

  • Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., & Owerbach, D. (2004). A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. Journal of Biological Chemistry, 279, 27233–27238.

    PubMed  CAS  Google Scholar 

  • Bramham, C. R., Alme, M. N., Bittins, M., et al. (2010). The Arc of synaptic memory. Experimental Brain Research, 200, 125–140.

    Google Scholar 

  • Braschi, E., Zunino, R., & McBride, H. M. (2009). MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Reports, 10, 748–754.

    PubMed  CAS  Google Scholar 

  • Chao, H. W., Hong, C. J., Huang, T. N., Lin, Y. L., & Hsueh, Y. P. (2008). SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. Journal of Cell Biology, 182, 141–155.

    PubMed  CAS  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S., & Yeh, E. T. (2007). SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 131, 584–595.

    PubMed  CAS  Google Scholar 

  • Chiu, S. Y., Asai, N., Costantini, F., & Hsu, W. (2008). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biology, 6, e310.

    PubMed  Google Scholar 

  • Cho, K. I., Yi, H., Yeh, A., et al. (2009). Haploinsufficiency of RanBP2 is neuroprotective against light-elicited and age-dependent degeneration of photoreceptor neurons. Cell Death and Differentiation, 16, 287–297.

    PubMed  CAS  Google Scholar 

  • Craig, T. J., Jaafari, N., Petrovic, M. M., Rubin, P. P., Mellor, J. R., & Henley, J. M. (2012). Homeostatic synaptic scaling is regulated by protein SUMOylation. Journal of Biological Chemistry, 287, 22781–22788.

    PubMed  CAS  Google Scholar 

  • Dai, X. Q., Plummer, G., Casimir, M., et al. (2011). SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes, 60, 838–847.

    PubMed  CAS  Google Scholar 

  • Dawlaty, M. M., Malureanu, L., Jeganathan, K. B., et al. (2008). Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell, 133, 103–115.

    PubMed  CAS  Google Scholar 

  • de Cristofaro, T., Mascia, A., Pappalardo, A., D’Andrea, B., Nitsch, L., & Zannini, M. (2009). Pax8 protein stability is controlled by sumoylation. Journal of Molecular Endocrinology, 42, 35–46.

    PubMed  Google Scholar 

  • Demarque, M. D., Nacerddine, K., Neyret-Kahn, H., et al. (2011). Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice. Gastroenterology, 140, 286–296.

    PubMed  CAS  Google Scholar 

  • Denuc, A., & Marfany, G. (2010). SUMO and ubiquitin paths converge. Biochemical Society Transactions, 38, 34–39.

    PubMed  CAS  Google Scholar 

  • Dutting, E., Schroder-Kress, N., Sticht, H., & Enz, R. (2011). SUMO E3 ligases are expressed in the retina and regulate SUMOylation of the metabotropic glutamate receptor 8b. The Biochemical Journal, 435, 365–371.

    PubMed  Google Scholar 

  • Enz, R. (2012). Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins. Frontiers in Molecular Neuroscience, 5, 52.

    PubMed  CAS  Google Scholar 

  • Evdokimov, E., Sharma, P., Lockett, S. J., Lualdi, M., & Kuehn, M. R. (2008). Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. Journal of Cell Science, 121, 4106–4113.

    PubMed  CAS  Google Scholar 

  • Fei, E., Jia, N., Yan, M., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochemical and Biophysical Research Communications, 347, 406–412.

    PubMed  CAS  Google Scholar 

  • Feligioni, M., Nishimune, A., & Henley, J. M. (2009). Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. European Journal of Neuroscience, 29, 1348–1356.

    PubMed  Google Scholar 

  • Flavell, S. W., & Greenberg, M. E. (2008). Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annual Review of Neuroscience, 31, 563–590.

    PubMed  CAS  Google Scholar 

  • Flavell, S. W., Kim, T. K., Gray, J. M., et al. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60, 1022–1038.

    PubMed  CAS  Google Scholar 

  • Gao, C., Ho, C. C., Reineke, E., et al. (2008). Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation. Molecular and Cellular Biology, 28, 5658–5667.

    PubMed  CAS  Google Scholar 

  • Gareau, J. R., & Lima, C. D. (2010). The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nature Reviews Molecular Cell Biology, 11, 861–871.

    PubMed  CAS  Google Scholar 

  • Gareau, J. R., Reverter, D., & Lima, C. D. (2012). Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2. Journal of Biological Chemistry, 287, 4740–4751.

    PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R., & Melchior, F. (2007). Concepts in sumoylation: A decade on. Nature Reviews Molecular Cell Biology, 8, 947–956.

    PubMed  CAS  Google Scholar 

  • Geoffroy, M. C., Jaffray, E. G., Walker, K. J., & Hay, R. T. (2010). Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Molecular Biology of the Cell, 21, 4227–4239.

    PubMed  CAS  Google Scholar 

  • Gong, L., Li, B., Millas, S., & Yeh, E. T. (1999). Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Letters, 448, 185–189.

    PubMed  CAS  Google Scholar 

  • Gong, L., Millas, S., Maul, G. G., & Yeh, E. T. (2000). Differential regulation of sentrinized proteins by a novel sentrin-specific protease. Journal of Biological Chemistry, 275, 3355–3359.

    PubMed  CAS  Google Scholar 

  • Gregoire, S., Tremblay, A. M., Xiao, L., et al. (2006). Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. Journal of Biological Chemistry, 281, 4423–4433.

    PubMed  CAS  Google Scholar 

  • Gregoire, S., & Yang, X. J. (2005). Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Molecular and Cellular Biology, 25, 2273–2287.

    PubMed  CAS  Google Scholar 

  • Guo, D., Li, M., Zhang, Y., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature Genetics, 36, 837–841.

    PubMed  CAS  Google Scholar 

  • Hackett, A., Tarpey, P. S., Licata, A., et al. (2010). CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. European Journal of Human Genetics, 18, 544–552.

    PubMed  CAS  Google Scholar 

  • Haider, N. B., Jacobson, S. G., Cideciyan, A. V., et al. (2000). Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nature Genetics, 24, 127–131.

    PubMed  CAS  Google Scholar 

  • Hammer, E., Heilbronn, R., & Weger, S. (2007). The E3 ligase Topors induces the accumulation of polysumoylated forms of DNA topoisomerase I in vitro and in vivo. FEBS Letters, 581, 5418–5424.

    PubMed  CAS  Google Scholar 

  • Hay, R. T. (2005). SUMO: A history of modification. Molecular Cell, 18, 1–12.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Seki, M., Maeda, D., et al. (2002). Ubc9 is essential for viability of higher eukaryotic cells. Experimental Cell Research, 280, 212–221.

    PubMed  CAS  Google Scholar 

  • Hickey, C. M., Wilson, N. R., & Hochstrasser, M. (2012). Function and regulation of SUMO proteases. Nature Reviews Molecular Cell Biology, 13, 755–766.

    PubMed  CAS  Google Scholar 

  • Hoeller, D., Hecker, C. M., Wagner, S., Rogov, V., Dotsch, V., & Dikic, I. (2007). E3-independent monoubiquitination of ubiquitin-binding proteins. Molecular Cell, 26, 891–898.

    PubMed  CAS  Google Scholar 

  • Huang, Q., & Figueiredo-Pereira, M. E. (2010). Ubiquitin/proteasome pathway impairment in neurodegeneration: Therapeutic implications. Apoptosis, 15, 1292–1311.

    PubMed  CAS  Google Scholar 

  • Hunter, T., & Sun, H. (2009). Crosstalk between the SUMO and ubiquitin pathways. Ernst Schering Foundation Symposium Proceedings, Vol. 2008/1, pp. 1–16.

  • Jaafari, N., Konopacki, F. A., Owen, T. F., et al. (2013). SUMOylation is required for glycine-induced increases in AMPA receptor surface expression (ChemLTP) in hippocampal neurons. PLoS One, 8, e52345.

    PubMed  CAS  Google Scholar 

  • Janer, A., Werner, A., Takahashi-Fujigasaki, J., et al. (2010). SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Human Molecular Genetics, 19, 181–195.

    PubMed  CAS  Google Scholar 

  • Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73, 355–382.

    PubMed  CAS  Google Scholar 

  • Kagey, M. H., Melhuish, T. A., & Wotton, D. (2003). The polycomb protein Pc2 is a SUMO E3. Cell, 113, 127–137.

    PubMed  CAS  Google Scholar 

  • Kahyo, T., Nishida, T., & Yasuda, H. (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Molecular Cell, 8, 713–718.

    PubMed  CAS  Google Scholar 

  • Kang, J., Gocke, C. B., & Yu, H. (2006). Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochemistry, 7, 5.

    PubMed  Google Scholar 

  • Kang, X., Qi, Y., Zuo, Y., et al. (2010). SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Molecular Cell, 38, 191–201.

    Google Scholar 

  • Kantamneni, S., Wilkinson, K. A., Jaafari, N., et al. (2011). Activity-dependent SUMOylation of the brain-specific scaffolding protein GISP. Biochemical and Biophysical Research Communications, 409, 657–662.

    PubMed  CAS  Google Scholar 

  • Kerscher, O. (2007). SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Reports, 8, 550–555.

    PubMed  CAS  Google Scholar 

  • Kim, E. Y., Chen, L., Ma, Y., et al. (2012). Enhanced desumoylation in murine hearts by overexpressed SENP2 leads to congenital heart defects and cardiac dysfunction. Journal of Molecular and Cellular Cardiology, 52, 638–649.

    Google Scholar 

  • Kolli, N., Mikolajczyk, J., Drag, M., et al. (2010). Distribution and paralogue specificity of mammalian deSUMOylating enzymes. The Biochemical Journal, 430, 335–344.

    PubMed  CAS  Google Scholar 

  • Kotaja, N., Karvonen, U., Janne, O. A., & Palvimo, J. J. (2002). PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Molecular and Cellular Biology, 22, 5222–5234.

    PubMed  CAS  Google Scholar 

  • Krumova, P., Meulmeester, E., Garrido, M., et al. (2011). Sumoylation inhibits {alpha}-synuclein aggregation and toxicity. Journal of Cell Biology, 194, 49–60.

    PubMed  CAS  Google Scholar 

  • Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences, 70, 2123–2138.

    PubMed  CAS  Google Scholar 

  • Lee, Y. J., Mou, Y., Maric, D., Klimanis, D., Auh, S., & Hallenbeck, J. M. (2011). Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS One, 6, e25852.

    PubMed  CAS  Google Scholar 

  • Li, Y., Wang, H., Wang, S., Quon, D., Liu, Y. W., & Cordell, B. (2003). Positive and negative regulation of APP amyloidogenesis by sumoylation. Proceedings of the National Academy of Sciences of the USA, 100, 259–264.

    PubMed  CAS  Google Scholar 

  • Liu, B., Mink, S., Wong, K. A., et al. (2004). PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature Immunology, 5, 891–898.

    PubMed  CAS  Google Scholar 

  • Loriol, C., Khayachi, A., Poupon, G., Gwizdek, C., & Martin, S. (2013). Activity-dependent regulation of the sumoylation machinery in rat hippocampal neurons. Biology of the Cell, 105, 30–45.

    PubMed  CAS  Google Scholar 

  • Loriol, C., Parisot, J., Poupon, G., Gwizdek, C., & Martin, S. (2012). Developmental regulation and spatiotemporal redistribution of the sumoylation machinery in the rat central nervous system. PLoS One, 7, e33757.

    PubMed  CAS  Google Scholar 

  • Lu, H., Liu, B., You, S., et al. (2012). SENP2 regulates MEF2A de-SUMOylation in an activity dependent manner. Molecular Biology Reports, 40, 2485–2490.

    PubMed  Google Scholar 

  • Luan, Z., Liu, Y., Stuhlmiller, T. J., Marquez, J., & Garcia-Castro, M. I. (2013). SUMOylation of Pax7 is essential for neural crest and muscle development. Cellular and Molecular Life Sciences, 70, 1793–1806.

    PubMed  CAS  Google Scholar 

  • Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., & Butt, T. R. (2006). Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Science, 15, 182–189.

    PubMed  CAS  Google Scholar 

  • Marshall, H., Bhaumik, M., Aviv, H., et al. (2010). Deficiency of the dual ubiquitin/SUMO ligase Topors results in genetic instability and an increased rate of malignancy in mice. BMC Molecular Biology, 11, 31.

    PubMed  Google Scholar 

  • Martin, S. (2009). Extranuclear functions of protein sumoylation in the central nervous system. Medicine Science (Paris), 25, 693–698.

    Google Scholar 

  • Martin, S., Nishimune, A., Mellor, J. R., & Henley, J. M. (2007a). SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 447, 321–325.

    PubMed  CAS  Google Scholar 

  • Martin, S., Wilkinson, K. A., Nishimune, A., & Henley, J. M. (2007b). Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nature Reviews Neuroscience, 8, 948–959.

    PubMed  CAS  Google Scholar 

  • Mears, A. J., Kondo, M., Swain, P. K., et al. (2001). Nrl is required for rod photoreceptor development. Nature Genetics, 29, 447–452.

    PubMed  CAS  Google Scholar 

  • Mikkonen, L., Hirvonen, J., & Janne, O. A. (2013). SUMO-1 regulates body weight and adipogenesis via PPARgamma in male and female mice. Endocrinology, 154, 698–708.

    PubMed  CAS  Google Scholar 

  • Morita, Y., Kanei-Ishii, C., Nomura, T., & Ishii, S. (2005). TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Molecular Biology of the Cell, 16, 5433–5444.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: The SUMO proteases. Trends in Biochemical Sciences, 32, 286–295.

    PubMed  CAS  Google Scholar 

  • Nacerddine, K., Lehembre, F., Bhaumik, M., et al. (2005). The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Developmental Cell, 9, 769–779.

    PubMed  CAS  Google Scholar 

  • Namanja, A. T., Li, Y. J., Su, Y., et al. (2012). Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. Journal of Biological Chemistry, 287, 3231–3240.

    PubMed  CAS  Google Scholar 

  • Nishida, T., & Yasuda, H. (2002). PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. Journal of Biological Chemistry, 277, 41311–41317.

    PubMed  CAS  Google Scholar 

  • Onishi, A., Peng, G. H., Hsu, C., Alexis, U., Chen, S., & Blackshaw, S. (2009). Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron, 61, 234–246.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J. S., Dejean, A., & Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108, 109–120.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T. K., & Melchior, F. (2004). The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nature Structural & Molecular Biology, 11, 984–991.

    CAS  Google Scholar 

  • Potts, P. R., & Yu, H. (2005). Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Molecular and Cellular Biology, 25, 7021–7032.

    PubMed  CAS  Google Scholar 

  • Potts, P. R., & Yu, H. (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nature Structural & Molecular Biology, 14, 581–590.

    CAS  Google Scholar 

  • Rajendra, R., Malegaonkar, D., Pungaliya, P., et al. (2004). Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. Journal of Biological Chemistry, 279, 36440–36444.

    PubMed  CAS  Google Scholar 

  • Reverter, D., & Lima, C. D. (2005). Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature, 435, 687–692.

    PubMed  CAS  Google Scholar 

  • Riley, B. E., Zoghbi, H. Y., & Orr, H. T. (2005). SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. Journal of Biological Chemistry, 280, 21942–21948.

    PubMed  CAS  Google Scholar 

  • Riquelme, C., Barthel, K. K., & Liu, X. (2006). SUMO-1 modification of MEF2A regulates its transcriptional activity. Journal of Cellular and Molecular Medicine, 10, 132–144.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Dargemont, C., & Hay, R. T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. Journal of Biological Chemistry, 276, 12654–12659.

    PubMed  CAS  Google Scholar 

  • Roger, J. E., Nellissery, J., Kim, D. S., & Swaroop, A. (2010). Sumoylation of bZIP Transcription Factor NRL Modulates Target Gene Expression during Photoreceptor Differentiation. Journal of Biological Chemistry, 285, 25637–25644.

    PubMed  CAS  Google Scholar 

  • Rubio, M. D., Wood, K., Haroutunian, V., & Meador-Woodruff, J. H. (2013). Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology,. doi:10.1038/npp.2013.84.

    PubMed  Google Scholar 

  • Rytinki, M. M., Kaikkonen, S., Pehkonen, P., Jaaskelainen, T., & Palvimo, J. J. (2009). PIAS proteins: Pleiotropic interactors associated with SUMO. Cellular and Molecular Life Sciences, 66, 3029–3041.

    PubMed  CAS  Google Scholar 

  • Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., & Grosschedl, R. (2001). PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes & Development, 15, 3088–3103.

    CAS  Google Scholar 

  • Sampson, D. A., Wang, M., & Matunis, M. J. (2001). The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. Journal of Biological Chemistry, 276, 21664–21669.

    PubMed  CAS  Google Scholar 

  • Santti, H., Mikkonen, L., Anand, A., et al. (2005). Disruption of the murine PIASx gene results in reduced testis weight. Journal of Molecular Endocrinology, 34, 645–654.

    PubMed  CAS  Google Scholar 

  • Saracco, S. A., Miller, M. J., Kurepa, J., & Vierstra, R. D. (2007). Genetic analysis of SUMOylation in Arabidopsis: Conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiology, 145, 119–134.

    PubMed  CAS  Google Scholar 

  • Schmidt, D., & Muller, S. (2002). Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proceedings of the National Academy of Sciences of the USA, 99, 2872–2877.

    PubMed  CAS  Google Scholar 

  • Shalizi, A., Bilimoria, P. M., Stegmuller, J., et al. (2007). PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. Journal of Neuroscience, 27, 10037–10046.

    PubMed  CAS  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z., et al. (2006). A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science, 311, 1012–1017.

    PubMed  CAS  Google Scholar 

  • Sharma, P., Yamada, S., Lualdi, M., Dasso, M., & Kuehn, M. R. (2013). Senp1 Is Essential for Desumoylating Sumo1-Modified Proteins but Dispensable for Sumo2 and Sumo3 Deconjugation in the Mouse Embryo. Cell Reports, 3, 1640–1650.

    PubMed  CAS  Google Scholar 

  • Shin, E. J., Shin, H. M., Nam, E., et al. (2012). DeSUMOylating isopeptidase: A second class of SUMO protease. EMBO Reports, 13, 339–346.

    PubMed  CAS  Google Scholar 

  • Shinbo, Y., Niki, T., Taira, T., et al. (2006). Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death and Differentiation, 13, 96–108.

    PubMed  CAS  Google Scholar 

  • Steffan, J. S., Agrawal, N., Pallos, J., et al. (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304, 100–104.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S., Mealer, R. G., Sixt, K. M., Barrow, R. K., Usiello, A., & Snyder, S. H. (2010). Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9. Journal of Biological Chemistry, 285, 20428–20432.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S., Sixt, K. M., Barrow, R., & Snyder, S. H. (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324, 1327–1330.

    PubMed  CAS  Google Scholar 

  • Tang, Z., El Far, O., Betz, H., & Scheschonka, A. (2005). Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. Journal of Biological Chemistry, 280, 38153–38159.

    PubMed  CAS  Google Scholar 

  • Tatham, M. H., Geoffroy, M. C., Shen, L., et al. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 10, 538–546.

    PubMed  CAS  Google Scholar 

  • Thompson, J. A., & Ziman, M. (2011). Pax genes during neural development and their potential role in neuroregeneration. Progress in Neurobiology, 95, 334–351.

    PubMed  CAS  Google Scholar 

  • Ulrich, H. D. (2005). Mutual interactions between the SUMO and ubiquitin systems: A plea of no contest. Trends in Cell Biology, 15, 525–532.

    PubMed  CAS  Google Scholar 

  • Van Nguyen, T., Angkasekwinai, P., Dou, H., et al. (2012). SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Molecular Cell, 45, 210–221.

    PubMed  Google Scholar 

  • Venteclef, N., Jakobsson, T., Ehrlund, A., et al. (2010). GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes & Development, 24, 381–395.

    CAS  Google Scholar 

  • Wang, J., Chen, L., Wen, S., et al. (2011). Defective sumoylation pathway directs congenital heart disease. Birth Defects Research. Part A, Clinical and Molecular Teratology, 91, 468–476.

    PubMed  CAS  Google Scholar 

  • Watanabe, M., Takahashi, K., Tomizawa, K., Mizusawa, H., & Takahashi, H. (2008). Developmental regulation of Ubc9 in the rat nervous system. Acta Biochimica Polonica, 55, 681–686.

    PubMed  CAS  Google Scholar 

  • Weger, S., Hammer, E., & Heilbronn, R. (2005). Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Letters, 579, 5007–5012.

    PubMed  CAS  Google Scholar 

  • Whitford, K. L., Dijkhuizen, P., Polleux, F., & Ghosh, A. (2002). Molecular control of cortical dendrite development. Annual Review of Neuroscience, 25, 127–149.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. A., Nakamura, Y., & Henley, J. M. (2010). Targets and consequences of protein SUMOylation in neurons. Brain Research Reviews, 64, 195–212.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. A., Nishimune, A., & Henley, J. M. (2008). Analysis of SUMO-1 modification of neuronal proteins containing consensus SUMOylation motifs. Neuroscience Letters, 436, 239–244.

    PubMed  CAS  Google Scholar 

  • Wong, K. A., Kim, R., Christofk, H., Gao, J., Lawson, G., & Wu, H. (2004). Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Molecular and Cellular Biology, 24, 5577–5586.

    PubMed  CAS  Google Scholar 

  • Xu, Y., Zuo, Y., Zhang, H., et al. (2010). Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. Journal of Biological Chemistry, 285, 36682–36688.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Sharma, P., Athanasiou, M., Kumar, A., Yamada, S., & Kuehn, M. R. (2005). Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Molecular and Cellular Biology, 25, 5171–5182.

    PubMed  CAS  Google Scholar 

  • Yan, Q., Gong, L., Deng, M., et al. (2010). Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proceedings of the National Academy of Sciences of the USA, 107, 21034–21039.

    PubMed  CAS  Google Scholar 

  • Yu, L., Ji, W., Zhang, H., et al. (2010). SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. Journal of Experimental Medicine, 207, 1183–1195.

    PubMed  CAS  Google Scholar 

  • Zhang, F. P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., & Janne, O. A. (2008). Sumo-1 function is dispensable in normal mouse development. Molecular and Cellular Biology, 28, 5381–5390.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank F. Aguila for excellent artwork. We gratefully acknowledge the ‘Fondation pour la Recherche Médicale’ (Equipe labellisée ‘Fondation pour la Recherche Médicale’ DEQ20111223747), the National Research Agency (ANR JCJC), the ‘Jérôme Lejeune’ and ‘Bettencourt-Schueller’ foundations for financial support. S.M. is a fellow from Young Investigator CNRS ATIP/ATIP+ and ANR JCJC programs. This work was also supported by the French Government through the ‘Investments for the Future,’ LabEx SIGNALIFE # ANR-11-LABX-0028-01.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gwizdek, C., Cassé, F. & Martin, S. Protein Sumoylation in Brain Development, Neuronal Morphology and Spinogenesis. Neuromol Med 15, 677–691 (2013). https://doi.org/10.1007/s12017-013-8252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8252-z

Keywords

Navigation