Skip to main content

Advertisement

Log in

Manganese Flux Across the Blood–Brain Barrier

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Manganese (Mn) is essential for brain growth and metabolism, but in excess can be a neurotoxicant. The chemical form (species) of Mn influences its kinetics and toxicity. Significant Mn species entering the brain are the Mn2+ ion and Mn citrate which, along with Mn transferrin, enter the brain by carrier-mediated processes. Although the divalent metal transporter (DMT-1) was suggested to be a candidate for brain Mn uptake, brain Mn influx was not different in Belgrade rats, which do not express functional DMT-1, compared to controls. Brain Mn influx was not sodium dependent or dependent on ATP hydrolysis, but was reduced by mitochondrial energy inhibitors. Mn and Fe do not appear to compete for brain uptake. Brain Mn uptake appears to be mediated by a Ca uptake mechanism, thought to not be a p-type ATPase, but a store-operated calcium channel. Efflux of Mn from the brain was found to be slower than markers used as membrane impermeable reference compounds, suggesting diffusion mediates brain Mn efflux. Owing to carrier-mediated brain Mn influx and diffusion-mediated efflux, slow brain Mn clearance and brain Mn accumulation with repeated excess exposure would be predicted, and have been reported. This may render the brain susceptible to Mn-induced neurotoxicity from excessive Mn exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

BMEC:

Brain microvascular endothelial cell

D o/a :

Octanol/aqueous partitioning coefficient

J :

Influx

K d :

Diffusion constant

K el :

Apparent elimination rate constant

K in :

Influx transfer coefficient

K m :

Michaelis–Menten constant

K out :

Brain capillary efflux

MMT:

Methylcyclopentadienyl manganese tricarbonyl

Mn:

Manganese

MW:

Molecular weight

P diffusion :

Estimated permeability due to diffusion

PS:

Permeability-surface area product

S:

Surface area of rat brain capillaries

Tf:

Transferrin

TfR-ME:

Transferrin receptor mediated endocytosis

V brain :

Brain distribution volume

V max :

Maximum velocity of carrier-mediated transport

References

  • Aisen, P., Aasa, R., & Redfield, A. G. (1969). The chromium, manganese, and cobalt complexes of transferrin. Journal Biological Chemistry, 244, 4628–4633.

    CAS  Google Scholar 

  • Ambudkar, I. S., Lockwich, T., Hiramatsu, Y., & Baum, B. J. (1992). Calcium entry in rat parotid acinar cells. Molecular and Cellular Biochemistry, 114, 73–77.

    PubMed  CAS  Google Scholar 

  • Aschner, M., & Aschner, J. L. (1990). Manganese transport across the blood-brain barrier: Relationship to iron homeostasis. Brain Research Bulletin, 24, 857–860.

    PubMed  CAS  Google Scholar 

  • Aschner, M., & Gannon, M. (1994). Manganese (Mn) transport across the rat blood-brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 33, 345–349.

    PubMed  CAS  Google Scholar 

  • Aschner, M., Gannon, M., & Kimelberg, H. K. (1992). Manganese uptake and efflux in cultured rat astrocytes. Journal of Neurochemistry, 58, 730–735.

    PubMed  CAS  Google Scholar 

  • Au, C., Benedetto, A., & Aschner, M. (2008). Manganese transport in eukaryotes: the role of DMT1. NeuroToxicology, 29, 569–576.

    PubMed  CAS  Google Scholar 

  • Audus, K. L., Ng, L., Wang, W., & Borchardt, R. T. (1996). Brain microvessel endothelial cell culture systems. Pharmaceutical Biotechnology, 8, 239–258.

    PubMed  CAS  Google Scholar 

  • Baldi, C., Vazquez, G., & Boland, R. (2002). Characterization of a 1,25(OH)2-vitamin D3-responsive capacitative Ca2+ entry pathway in rat osteoblast-like cells. Journal of Cellular Biochemistry, 86, 678–687.

    PubMed  CAS  Google Scholar 

  • Bossu, J. L., Elhamdani, A., Feltz, A., Tanzi, F., Aunis, D., & Thierse, D. (1992). Voltage-gated Ca entry in isolated bovine capillary endothelial cells: Evidence of a new type of BAY K 8644-sensitive channel. Pflügers Archiv, 420, 200–207.

    PubMed  CAS  Google Scholar 

  • Bradbury, M. W. (1997). Transport of iron in the blood-brain-cerebrospinal fluid system. Journal of Neurochemistry, 69, 443–454.

    PubMed  CAS  Google Scholar 

  • Burdo, J. R., Martin, J., Menzies, S. L., Dolan, K. G., Romano, M. A., Fletcher, R. J., et al. (1999). Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience, 93, 1189–1196.

    PubMed  CAS  Google Scholar 

  • Burdo, J. R., Menzies, S. L., Simpson, I. A., Garrick, L. M., Garrick, M. D., Dolan, K. G., et al. (2001). Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. Journal of Neuroscience Research, 66, 1198–1207.

    PubMed  CAS  Google Scholar 

  • Burdo, J. R., Simpson, I. A., Menzies, S., Beard, J., & Connor, J. R. (2003). Regulation of the profile of iron-management proteins in brain microvasculature. Journal of Cerebral Blood Flow and Metabolism, 24, 67–74.

    Google Scholar 

  • Burgess, J. (1992). Kinetic aspects of chemical speciation. The Analyst, 117, 605–611.

    CAS  Google Scholar 

  • Carafoli, E., & Brini, M. (2000). Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Current Opinion in Chemical Biology, 4, 152–161.

    PubMed  CAS  Google Scholar 

  • Chandra, S. V., Shukla, G. S., Srivastava, R. S., Singh, H., & Gupta, V. P. (1981). An exploratory study of manganese exposure to welders. Clinical Toxicology, 18, 407–416.

    PubMed  CAS  Google Scholar 

  • Cheng, A. M., Morrison, S. W., Yang, D. X., & Hagen, S. J. (2001). Energy dependence of restitution in the gastric mucosa. American Journal of Physiology Cell Physiology, 281, C430–C438.

    PubMed  CAS  Google Scholar 

  • Chong, W. S., Kwan, P. C., Chan, L. Y., Chiu, P. Y., Cheung, T. K., & Lau, T. K. (2005). Expression of divalent metal transporter 1 (DMT1) isoforms in first trimester human placenta and embryonic tissues. Human Reproduction, 20, 3532–3538.

    PubMed  CAS  Google Scholar 

  • Chua, A. C., & Morgan, E. H. (1996). Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biological Trace Element Research, 55, 39–54.

    PubMed  CAS  Google Scholar 

  • Chua, A. C., & Morgan, E. H. (1997). Manganese metabolism is impaired in the Belgrade laboratory rat. Journal of Comparative Physiology B, Biochemical Systemic and Environmental Physiology, 167, 361–369.

    CAS  Google Scholar 

  • Chua, A. C., Stonell, L. M., Savigni, D. L., & Morgan, E. H. (1996). Mechanisms of manganese transport in rabbit erythroid cells. Journal of Physiology, 493(Pt 1), 99–112.

    PubMed  CAS  Google Scholar 

  • Cole, E. S., & Glass, J. (1983). Transferrin binding and iron uptake in mouse hepatocytes. Biochimica et Biophysica Acta, 762, 102–110.

    PubMed  CAS  Google Scholar 

  • Conrad, M. E., Umbreit, J. N., Moore, E. G., Hainsworth, L. N., Porubcin, M., Simovich, M. J., et al. (2000). Separate pathways for cellular uptake of ferric and ferrous iron. American Journal of Physiology. Gastrointestinal Liver Physiology, 279, G767–G774.

    CAS  Google Scholar 

  • Cotzias, G. C., Horiuchi, K., Fuenzalida, S., & Mena, I. (1968). Chronic manganese poisoning. Clearance of tissue manganese concentrations with persistence of the neurological picture. Neurology, 18, 376–382.

    PubMed  CAS  Google Scholar 

  • Crossgrove, J. S., Allen, D. D., Bukaveckas, B. L., Rhineheimer, S. S., & Yokel, R. A. (2003). Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. NeuroToxicology, 24, 3–13.

    PubMed  CAS  Google Scholar 

  • Crossgrove, J. S., & Yokel, R. A. (2004). Manganese distribution across the blood-brain barrier III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. NeuroToxicology, 25, 451–460.

    PubMed  CAS  Google Scholar 

  • Crossgrove, J. S., & Yokel, R. A. (2005). Manganese distribution across the blood-brain barrier. IV. Evidence for brain influx through store-operated calcium channels. NeuroToxicology, 26, 297–307.

    PubMed  CAS  Google Scholar 

  • Cui, Z. J., & Dannies, P. S. (1992). Thyrotropin-releasing hormone-mediated Mn2+ entry in perifused rat anterior pituitary cells. Biochemical Journal, 283(Pt 2), 507–513.

    PubMed  CAS  Google Scholar 

  • Dastur, D. K., Manghani, D. K., & Raghavendran, K. V. (1971). Distribution and fate of 54Mn in the monkey: Studies of different parts of the central nervous system and other organs. Journal of Clinical Investigation, 50, 9–20.

    PubMed  CAS  Google Scholar 

  • Davidsson, L., Lönnerdal, B., Sandström, B., Kunz, C., & Keen, C. L. (1989). Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. Journal of Nutrition, 119, 1461–1464.

    PubMed  CAS  Google Scholar 

  • Davis, C. D., Wolf, T. L., & Greger, J. L. (1992). Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats. Journal of Nutrition, 122, 1300–1308.

    PubMed  CAS  Google Scholar 

  • Dickinson, T. K., Devenyi, A. G., & Connor, J. R. (1996). Distribution of injected iron 59 and manganese 54 in hypotransferrinemic mice. Journal of Laboratory and Clinical Medicine, 128, 270–278.

    PubMed  CAS  Google Scholar 

  • Dobrydneva, Y., & Blackmore, P. (2001). 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Molecular Pharmacology, 60, 541–552.

    PubMed  CAS  Google Scholar 

  • Dorman, D. C., Struve, M. F., James, R. A., Marshall, M. W., Parkinson, C. U., & Wong, B. A. (2001a). Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicology and Applied Pharmacology, 170, 79–87.

    PubMed  CAS  Google Scholar 

  • Dorman, D. C., Struve, M. F., James, R. A., McManus, B. E., Marshall, M. W., & Wong, B. A. (2001b). Influence of dietary manganese on the pharmacokinetics of inhaled manganese sulfate in male CD rats. Toxicological Sciences, 60, 242–251.

    PubMed  CAS  Google Scholar 

  • Drapeau, P., & Nachshen, D. A. (1984). Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. Journal of Physiology, 348, 493–510.

    PubMed  CAS  Google Scholar 

  • Drown, D. B., Oberg, S. G., & Sharma, R. P. (1986). Pulmonary clearance of soluble and insoluble forms of manganese. Journal of Toxicology and Environmental Health, 17, 201–212.

    PubMed  CAS  Google Scholar 

  • Edlund, G. L., & Halestrap, A. P. (1988). The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Biochemical Journal, 249, 117–126.

    PubMed  CAS  Google Scholar 

  • Erikson, K. M., Shihabi, Z. K., Aschner, J. L., & Aschner, M. (2002). Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biological Trace Element Research, 87, 143–156.

    PubMed  CAS  Google Scholar 

  • Erikson, K. M., Syversen, T., Steinnes, E., & Aschner, M. (2004). Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. The Journal of Nutritional Biochemistry, 15, 335–341.

    PubMed  CAS  Google Scholar 

  • Fasolato, C., Hoth, M., Matthews, G., & Penner, R. (1993a). Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proceedings of the National Academy of Sciences of the United States of America, 90, 3068–3072.

    PubMed  CAS  Google Scholar 

  • Fasolato, C., Hoth, M., & Penner, R. (1993b). Multiple mechanisms of manganese-induced quenching of fura-2 fluorescence in rat mast cells. Pflügers Archiv, 423, 225–231.

    PubMed  CAS  Google Scholar 

  • Ferraz, H. B., Bertolucci, P. H., Pereira, J. S., Lima, J. G., & Andrade, L. A. (1988). Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology, 38, 550–553.

    PubMed  CAS  Google Scholar 

  • Finley, J. W. (1998). Manganese uptake and release by cultured human hepato-carcinoma (Hep-G2) cells. Biological Trace Element Research, 64, 101–118.

    PubMed  CAS  Google Scholar 

  • Finley, J. W. (1999). Manganese absorption and retention by young women is associated with serum ferritin concentration. American Journal of Clinical Nutrition, 70, 37–43.

    PubMed  CAS  Google Scholar 

  • Fitsanakis, V. A., Piccola, G., Aschner, J. L., & Aschner, M. (2005). Manganese transport by rat brain endothelial (RBE4) cell-based transwell model in the presence of astrocyte conditioned media. Journal of Neuroscience Research, 81, 235–243.

    PubMed  CAS  Google Scholar 

  • Fitsanakis, V. A., Piccola, G., Aschner, J. L., & Aschner, M. (2006). Characteristics of manganese (Mn) transport in rat brain endothelial (RBE4) cells, an in vitro model of the blood-brain barrier. NeuroToxicology, 27, 60–70.

    PubMed  CAS  Google Scholar 

  • Fitsanakis, V. A., Thompson, K. N., Deery, S. E., Milatovic, D., Shihabi, Z. K., Erikson, K. M., et al. (2009). A chronic iron-deficient/high-manganese diet in rodents results in increased brain oxidative stress and behavioral deficits in the morris water maze. Neurotoxicity Research, 15, 167–178.

    PubMed  CAS  Google Scholar 

  • Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., et al. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103, 116–124.

    PubMed  CAS  Google Scholar 

  • Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., & Andrews, N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences of the United States of America, 95, 1148–1153.

    PubMed  CAS  Google Scholar 

  • Frame, M. D., & Milanick, M. A. (1991). Mn and Cd transport by the Na-Ca exchanger of ferret red blood cells. American Journal of Physiology, 261, C467–C475.

    PubMed  CAS  Google Scholar 

  • Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95, 205–214.

    PubMed  CAS  Google Scholar 

  • Garrick, L. M., Dolan, K. G., Romano, M. A., & Garrick, M. D. (1999). Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells. Journal of Cellular Physiology, 178, 349–358.

    PubMed  CAS  Google Scholar 

  • Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1999). Manganese and calcium transport in mitochondria: Implications for manganese toxicity. NeuroToxicology, 20, 445–453.

    PubMed  CAS  Google Scholar 

  • Georgieff, M. K., Wobken, J. K., Welle, J., Burdo, J. R., & Connor, J. R. (2000). Identification and localization of divalent metal transporter-1 (DMT-1) in term human placenta. Placenta, 21, 799–804.

    PubMed  CAS  Google Scholar 

  • Gianutsos, G., Seltzer, M. D., Saymeh, R., Wu, M. L., & Michel, R. G. (1985). Brain manganese accumulation following systemic administration of different forms. Archives of Toxicology, 57, 272–275.

    PubMed  CAS  Google Scholar 

  • Griffiths, W. J., Kelly, A. L., Smith, S. J., & Cox, T. M. (2000). Localization of iron transport and regulatory proteins in human cells. QJM, 93, 575–587.

    PubMed  CAS  Google Scholar 

  • Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., et al. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388, 482–488.

    PubMed  CAS  Google Scholar 

  • Gunter, T. E., Gavin, C. E., Aschner, M., & Gunter, K. K. (2006). Speciation of manganese in cells and mitochondria: A search for the proximal cause of manganese neurotoxicity. NeuroToxicology, 27, 765–776.

    PubMed  CAS  Google Scholar 

  • Gunther, T., Vormann, J., & Cragoe, E. J., Jr. (1990). Species-specific Mn2+/Mg2+ antiport from Mg2(+)-loaded erythrocytes. FEBS Letters, 261, 47–51.

    PubMed  CAS  Google Scholar 

  • Harris, W. R., & Chen, Y. (1994). Electron paramagnetic resonance and difference ultraviolet studies of Mn2+ binding to serum transferrin. Journal of Inorganic Biochemistry, 54, 1–19.

    PubMed  CAS  Google Scholar 

  • Heilig, E. A., Thompson, K. J., Molina, R. M., Ivanov, A. R., Brain, J. D., & Wessling-Resnick, M. (2006). Manganese and iron transport across pulmonary epithelium. American Journal of Physiology Lung Cellular and Molecular Physiology, 290, L1247–L1259.

    PubMed  CAS  Google Scholar 

  • Huang, C. C., Chu, N. S., Lu, C. S., Wang, J. D., Tsai, J. L., Tzeng, J. L., et al. (1989). Chronic manganese intoxication. Archives of Neurology, 46, 1104–1106.

    PubMed  CAS  Google Scholar 

  • Hudnell, H. K. (1999). Effects from environmental Mn exposures: A review of the evidence from non-occupational exposure studies. NeuroToxicology, 20, 379–397.

    PubMed  CAS  Google Scholar 

  • Jacob, R. (1990). Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. Journal of Physiology, 421, 55–77.

    PubMed  CAS  Google Scholar 

  • Jankowski, J., Tepel, M., Stephan, N., van der Giet, M., Breden, V., Zidek, W., et al. (2001). Characterization of p-hydroxy-hippuric acid as an inhibitor of Ca2+-ATPase in end-stage renal failure. Kidney International. Supplement, 78, S84–S88.

    PubMed  CAS  Google Scholar 

  • Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., & Mason, D. Y. (1984). Transferrin receptor on endothelium of brain capillaries. Nature, 312, 162–163.

    PubMed  CAS  Google Scholar 

  • Jones, K. T., & Sharpe, G. R. (1994). Ni2+ blocks the Ca2+ influx in human keratinocytes following a rise in extracellular Ca2+. Experimental Cell Research, 212, 409–413.

    PubMed  CAS  Google Scholar 

  • Jursa, T., & Smith, D. R. (2009). Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicological Sciences, 107, 182–193.

    PubMed  CAS  Google Scholar 

  • Kakee, A., Terasaki, T., & Sugiyama, Y. (1996). Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. Journal of Pharmacology and Experimental Therapeutics, 277, 1550–1559.

    PubMed  CAS  Google Scholar 

  • Kawamura, R., Ikuta, H., Hukuzumi, S., Yamada, R., Tubaki, S., Kodama, T., et al. (1941). Intoxication by manganese in well water. Kitasato Archives of Experimental Medicine, 18, 145–169.

    CAS  Google Scholar 

  • Ke, Y., Chang, Y. Z., Duan, X. L., Du, J. R., Zhu, L., Wang, K., et al. (2005). Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiology of Aging, 26, 739–748.

    PubMed  CAS  Google Scholar 

  • Kerper, L. E., & Hinkle, P. M. (1997a). Cellular uptake of lead is activated by depletion of intracellular calcium stores. The Journal Biological Chemistry, 272, 8346–8352.

    CAS  Google Scholar 

  • Kerper, L. E., & Hinkle, P. M. (1997b). Lead uptake in brain capillary endothelial cells: Activation by calcium store depletion. Toxicology and Applied Pharmacology, 146, 127–133.

    PubMed  CAS  Google Scholar 

  • Ketchum, K. A. (1999). Genome based comparisons of transporters. Second AAPS Frontier Symposium: Membrane transporters and drug therapy. Bethesda, MD: NIH.

    Google Scholar 

  • Khoo, C., Helm, J., Choi, H. B., Kim, S. U., & McLarnon, J. G. (2001). Inhibition of store-operated Ca2+ influx by acidic extracellular pH in cultured human microglia. Glia, 36, 22–30.

    PubMed  CAS  Google Scholar 

  • Kim, Y. V., Di Cello, F., Hillaire, C. S., & Kim, K. S. (2004). Differential Ca2+ signaling by thrombin and protease-activated receptor-1-activating peptide in human brain microvascular endothelial cells. American Journal of Physiology. Cell Physiology., 286, C31–C42.

    PubMed  CAS  Google Scholar 

  • Kukkonen, J. P., Lund, P. E., & Åkerman, K. E. (2001). 2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca2+ discharge and store-operated Ca2+ influx. Cell Calcium, 30, 117–129.

    PubMed  CAS  Google Scholar 

  • Kwik-Uribe, C. L., Golub, M. S., & Keen, C. L. (2000). Chronic marginal iron intakes during early development in mice alter brain iron concentrations and behavior despite postnatal iron supplementation. Journal of Nutrition, 130, 2040–2048.

    PubMed  CAS  Google Scholar 

  • Leblondel, G., & Allain, P. (1999). Manganese transport by Caco-2 cells. Biological Trace Element Research, 67, 13–28.

    PubMed  CAS  Google Scholar 

  • Leong, W. I., & Lonnerdal, B. (2005). Iron transporters in rat mammary gland: effects of different stages of lactation and maternal iron status. American Journal of Clinical Nutrition, 81, 445–453.

    PubMed  CAS  Google Scholar 

  • Levin, V. A. (1980). Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. Journal of Medicinal Chemistry, 23, 682–684.

    PubMed  CAS  Google Scholar 

  • Liu, X., & Ambudkar, I. S. (2001). Characteristics of a store-operated calcium-permeable channel: Sarcoendoplasmic reticulum calcium pump function controls channel gating. The Journal of Biological Chemistry, 276, 29891–29898.

    PubMed  CAS  Google Scholar 

  • Lucaciu, C. M., Dragu, C., Copaescu, L., & Morariu, V. V. (1997). Manganese transport through human erythrocyte membranes. An EPR study. Biochimica et Biophysica Acta, 1328, 90–98.

    PubMed  CAS  Google Scholar 

  • Ludwiczek, S., Theurl, I., Muckenthaler, M. U., Jakab, M., Mair, S. M., Theurl, M., et al. (2007). Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nature Medicine, 13, 448–454.

    PubMed  CAS  Google Scholar 

  • Lynch, C. J., & Deth, R. C. (1984). Release of a common source of intracellular Ca2+ by alpha-adrenergic agonists and dinitrophenol in rat liver slices. Pharmacology, 28, 74–85.

    PubMed  CAS  Google Scholar 

  • Malecki, E. A., Cook, B. M., Devenyi, A. G., Beard, J. L., & Connor, J. R. (1999). Transferrin is required for normal distribution of 59Fe and 54Mn in mouse brain. Journal of the Neurological Sciences, 170, 112–118.

    PubMed  CAS  Google Scholar 

  • Markesbery, W. R., Ehmann, W. D., Hossain, T. I., & Alauddin, M. (1984). Brain manganese concentrations in human aging and Alzheimer’s disease. NeuroToxicology, 5, 49–57.

    PubMed  CAS  Google Scholar 

  • Mason, M. J., Mayer, B., & Hymel, L. J. (1993). Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. American Journal of Physiology, 264, C654–C662.

    PubMed  CAS  Google Scholar 

  • Mena, I., Horiuchi, K., Burke, K., & Cotzias, G. C. (1969). Chronic manganese poisoning. Individual susceptibility and absorption of iron. Neurology, 19, 1000–1006.

    PubMed  CAS  Google Scholar 

  • Michalke, B., Halbach, S., Berthele, A., Mistritiotis, P., & Ochsenkuehn-Petropoulou, M. (2007). Size characterization of manganese species from human serum and cerebrospinal fluid using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry., 22, 267–272.

    CAS  Google Scholar 

  • Miller, R. K., Mattison, D. R., Panigel, M., Ceckler, T., Bryant, R., & Thomford, P. (1987). Kinetic assessment of manganese using magnetic resonance imaging in the dually perfused human placenta in vitro. Environmental Health Perspectives, 74, 81–91.

    PubMed  CAS  Google Scholar 

  • Moore, J., & Pearson, R. (1981). Kinetics and mechanism (p. 304). New York: Wiley.

    Google Scholar 

  • Murphy, V. A., Wadhwani, K. C., Smith, Q. R., & Rapoport, S. I. (1991). Saturable transport of manganese(II) across the rat blood-brain barrier. Journal of Neurochemistry, 57, 948–954.

    PubMed  CAS  Google Scholar 

  • Nagatomo, S., Umehara, F., Hanada, K., Nobuhara, Y., Takenaga, S., Arimura, K., et al. (1999). Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature. Journal of the Neurological Sciences, 162, 102–105.

    PubMed  CAS  Google Scholar 

  • Narita, K., Kawasaki, F., & Kita, H. (1990). Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Research, 510, 289–295.

    PubMed  CAS  Google Scholar 

  • Newland, M. C., Cox, C., Hamada, R., Oberdorster, G., & Weiss, B. (1987). The clearance of manganese chloride in the primate. Fundamental and Applied Toxicology, 9, 314–328.

    PubMed  CAS  Google Scholar 

  • Nischwitz, V., Berthele, A., & Michalke, B. (2008). Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Analytica Chimica Acta, 627, 258–269.

    PubMed  CAS  Google Scholar 

  • Nishimura, Y., & Inaba, J. (1983). Manganese metabolism in rats of various ages. Nippon Eiseigaku Zasshi, 38, 764–771.

    PubMed  CAS  Google Scholar 

  • Nong, A., Teeguarden, J. G., Clewell, H. J., Dorman, D. C., & Andersen, M. E. (2008). Pharmacokinetic modeling of manganese in the rat IV: Assessing factors that contribute to brain accumulation during inhalation exposure. Journal of Toxicology and Environmental Health A, 71, 413–426.

    CAS  Google Scholar 

  • Ono, K., Komai, K., & Yamada, M. (2002). Myoclonic involuntary movement associated with chronic manganese poisoning. Journal of the Neurological Sciences, 199, 93–96.

    PubMed  Google Scholar 

  • Onoda, K., Hasegawa, A., Sunouchi, M., Tanaka, S., Takanaka, A., Omori, Y., et al. (1978). Studies on the fate of poisonous metals in experimental animals. (VII). Distribution and transplacental passage of manganese in pregnant rats and fetus. Shokuhin Eiseigaku Zasshi, 19, 208–215.

    CAS  Google Scholar 

  • Pardridge, W. (2003). Blood-brain barrier drug targeting: The future of brain drug development. Molecular Interventions, 3, 90–105.

    PubMed  CAS  Google Scholar 

  • Petti, L., & Powell, K. (1997). IUPAC stability constant database. Yorks, UK: Academic Software.

    Google Scholar 

  • Picard, V., Govoni, G., Jabado, N., & Gros, P. (2000). Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. The Journal of Biological Chemistry, 275, 35738–35745.

    PubMed  CAS  Google Scholar 

  • Poole, R. C., & Halestrap, A. P. (1993). Transport of lactate and other monocarboxylates across mammalian plasma membranes. American Journal of Physiology, 264, C761–C782.

    PubMed  CAS  Google Scholar 

  • Rabin, O., Hegedus, L., Bourre, J. M., & Smith, Q. R. (1993). Rapid brain uptake of manganese (II) across the blood-brain barrier. Journal of Neurochemistry, 61, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Reaney, S. H., Kwik-Uribe, C. L., & Smith, D. R. (2002). Manganese oxidation state and its implications for toxicity. Chemical Research in Toxicology, 15, 1119–1126.

    PubMed  CAS  Google Scholar 

  • Riccio, A., Mattei, C., Kelsell, R. E., Medhurst, A. D., Calver, A. R., Randall, A. D., et al. (2002). Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. The Journal Biological Chemistry, 277, 12302–12309.

    CAS  Google Scholar 

  • Roels, H. A., Ghyselen, P., Buchet, J. P., Ceulemans, E., & Lauwerys, R. R. (1992). Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. British Journal Industrial Medicine, 49, 25–34.

    CAS  Google Scholar 

  • Roels, H., Lauwerys, R., Buchet, J. P., Genet, P., Sarhan, M. J., Hanotiau, I., et al. (1987). Epidemiological survey among workers exposed to manganese: Effects on lung, central nervous system, and some biological indices. American Journal of Industrial Medicine, 11, 307–327.

    PubMed  CAS  Google Scholar 

  • Roels, H., Meiers, G., Delos, M., Ortega, I., Lauwerys, R., Buchet, J. P., et al. (1997). Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Archives of Toxicology, 71, 223–230.

    PubMed  CAS  Google Scholar 

  • Rossipal, E. (2000). Investigation on the transport of trace elements across barriers in humans: Studies of placental and mammary transfer. Journal of Trace Microprobe Technique, 18, 493–497.

    CAS  Google Scholar 

  • Roth, J. A. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, 39, 45–57.

    PubMed  CAS  Google Scholar 

  • Roth, J. A. (2009). Are there common biochemical and molecular mechanisms controlling manganism and parkisonism? Neuromolecular Medicine. doi:10.1007/s12017-009-8088-8.

  • Sacher, A., Cohen, A., & Nelson, N. (2001). Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes. Journal of Experimental Biology, 204, 1053–1061.

    PubMed  CAS  Google Scholar 

  • Scheuhammer, A. M., & Cherian, M. G. (1985). Binding of manganese in human and rat plasma. Biochimica et Biophysica Acta, 840, 163–169.

    PubMed  CAS  Google Scholar 

  • Schramm, V. L., & Brandt, M. (1986). The manganese(II) economy of rat hepatocytes. Federation Proceedings, 45, 2817–2820.

    PubMed  CAS  Google Scholar 

  • Shibuya, I., & Douglas, W. W. (1992). Calcium channels in rat melanotrophs are permeable to manganese, cobalt, cadmium, and lanthanum, but not to nickel: Evidence provided by fluorescence changes in fura-2-loaded cells. Endocrinology, 131, 1936–1941.

    PubMed  CAS  Google Scholar 

  • Siddappa, A. J., Rao, R. B., Wobken, J. D., Casperson, K., Leibold, E. A., Connor, J. R., et al. (2003). Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain. Pediatric Research, 53, 800–807.

    PubMed  CAS  Google Scholar 

  • Siddappa, A. J., Rao, R. B., Wobken, J. D., Leibold, E. A., Connor, J. R., & Georgieff, M. K. (2002). Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. Journal of Neuroscience Research, 68, 761–775.

    PubMed  CAS  Google Scholar 

  • Sjögren, B., Gustavsson, P., & Hogstedt, C. (1990). Neuropsychiatric symptoms among welders exposed to neurotoxic metals. Br. J. Ind. Med., 47, 704–707.

    PubMed  Google Scholar 

  • Sjögren, B., Iregren, A., Frech, W., Hagman, M., Johansson, L., Tesarz, M., et al. (1996). Effects on the nervous system among welders exposed to aluminium and manganese. Occupational and Environmental Medicine, 53, 32–40.

    PubMed  Google Scholar 

  • Smith, Q. R. (1989). Quantitation of blood-brain barrier permeability. Implications of the Blood-Brain Barrier and Its Manipulation. E. A. Neuwelt. New York, Plenum Publishing Corporation. 1: 85–118.

  • Sugawara, N., Li, D., & Sugawara, C. (1994). Biliary excretion of exogenous cadmium and manganese in Long-Evans Cinnamon (LEC) rats characterized by an inherently gross amount of copper-metallothionein in the liver. Archives of Toxicology, 68, 520–523.

    PubMed  CAS  Google Scholar 

  • Takasato, Y., Rapoport, S. I., & Smith, Q. R. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. American Journal of Physiology, 247, H484–H493.

    PubMed  CAS  Google Scholar 

  • Takeda, A. (2003). Manganese action in brain function. Brain Research Review., 41, 79–87.

    CAS  Google Scholar 

  • Takeda, A., Ishiwatari, S., & Okada, S. (2000). Influence of transferrin on manganese uptake in rat brain. Journal of Neuroscience Research, 59, 542–552.

    PubMed  CAS  Google Scholar 

  • Takeda, A., Sawashita, J., & Okada, S. (1995). Biological half-lives of zinc and manganese in rat brain. Brain Research, 695, 53–58.

    PubMed  CAS  Google Scholar 

  • Thompson, K., Molina, R. M., Donaghey, T., Schwob, J. E., Brain, J. D., & Wessling-Resnick, M. (2007). Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB Journal, 21, 223–230.

    PubMed  CAS  Google Scholar 

  • Tiffert, T., & Lew, V. L. (2001). Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Cell Calcium, 30, 337–342.

    PubMed  CAS  Google Scholar 

  • Triguero, D., Buciak, J., & Pardridge, W. M. (1990). Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. Journal of Neurochemistry, 54, 1882–1888.

    PubMed  CAS  Google Scholar 

  • Tsukamoto, T., Koizumi, N., & Ninomiya, R. (1987). Manganese transfer from mothers to fetuses or sucklings during pregnancy and lactation. Nippon Eiseigaku Zasshi, 42, 633–639.

    PubMed  CAS  Google Scholar 

  • Vandewalle, B., Granier, A. M., Peyrat, J. P., Bonneterre, J., & Lefebvre, J. (1985). Transferrin receptors in cultured breast cancer cells. Journal of Cancer Research and Clinical Oncology, 110, 71–76.

    PubMed  CAS  Google Scholar 

  • Wadhwani, K. C., Murphy, V. A., Smith, Q. R., & Rapoport, S. I. (1992). Saturable transport of manganese(II) across blood-nerve barrier of rat peripheral nerve. American Journal of Physiology, 262, R284–R288.

    PubMed  CAS  Google Scholar 

  • Wang, X. S., Ong, W. Y., & Connor, J. R. (2001). A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. Journal of Neurocytology, 30, 353–360.

    PubMed  Google Scholar 

  • Wedler, F. C., Ley, B. W., & Grippo, A. A. (1989). Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochemical Research, 14, 1129–1135.

    PubMed  CAS  Google Scholar 

  • Wu, L. J., Leenders, A. G., Cooperman, S., Meyron-Holtz, E., Smith, S., Land, W., et al. (2004). Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Research, 1001, 108–117.

    PubMed  CAS  Google Scholar 

  • Xiang, M., Mohamalawari, D., & Rao, R. (2005). A novel isoform of the secretory pathway Ca2+, Mn(2+)-ATPase, hSPCA2, has unusual properties and is expressed in the brain. The Journal of Biol Chem., 280, 11608–11614.

    CAS  Google Scholar 

  • Yokel, R. A. (2006). Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. Journal of Alzheimer’s Disease, 10, 223–253.

    PubMed  Google Scholar 

  • Yokel, R. A., & Crossgrove, J. S. (2004). Manganese toxicokinetics at the blood-brain barrier. Research Report (Health Effective Institute). 7–58; discussion 59–73.

  • Yokel, R. A., Lasley, S. M., & Dorman, D. C. (2006). The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. Journal of Toxicology and Environmental Health, Part B, 9, 63–85.

    CAS  Google Scholar 

  • Yokel, R. A., Wilson, M., Harris, W. R., & Halestrap, A. P. (2002). Aluminum citrate uptake by immortalized brain endothelial cells: Implications for its blood-brain barrier transport. Brain Research, 930, 101–110.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Health Effects Institute Assistance Award R-824835, NIH Grant T32 ES7266 and the University of Kentucky Graduate School. The author thanks Matt Hazzard, University of Kentucky Teaching & Academic Support Center, for preparing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Yokel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokel, R.A. Manganese Flux Across the Blood–Brain Barrier. Neuromol Med 11, 297–310 (2009). https://doi.org/10.1007/s12017-009-8101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8101-2

Keywords

Navigation