Skip to main content

Advertisement

Log in

Maximizing the Potential of Plasma Amyloid-Beta as a Diagnostic Biomarker for Alzheimer’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Amyloid plaques are composed primarily of amyloid-beta (Aβ) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) and are considered to play a pivotal role in Alzheimer’s disease (AD) pathogenesis. Presently, AD is diagnosed after the onset of clinical manifestations. With the arrival of novel therapeutic agents for treatment of AD, there is an urgent need for biomarkers to detect early stages of AD. Measurement of plasma Aβ has been suggested as an inexpensive and non-invasive tool to diagnose AD and to monitor Aβ modifying therapies. However, the majority of cross-sectional studies on plasma Aβ levels in humans have not shown differences between individuals with AD compared to controls. Similarly, cross-sectional studies of mouse plasma Aβ have yielded inconsistent trends in different mouse models. However, longitudinal studies appear to be more promising in humans. Recently, efforts to modify plasma Aβ levels using modulators have shown some promise. In this review, we will summarize the present data on plasma Aβ in humans and mouse models of AD. We will discuss the potential of modulators of Aβ levels in plasma, including antibodies and insulin, and the challenges associated with measuring plasma Aβ. Modulators of plasma Aβ may provide an important tool to optimize plasma Aβ levels and may improve the diagnostic potential of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andreasen, N., Hesse, C., Davidsson, P., Minthon, L., Wallin, A., Winblad, B., et al. (1999). Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset alzheimer disease and stability during the course of disease. Archives of Neurology, 56, 673–680.

    PubMed  CAS  Google Scholar 

  • Asami-Odaka, A., Obayashi-Adachi, Y., Matsumoto, Y., Takahashi, H., Fukumoto, H., Horiguchi, T., et al. (2005). Passive immunization of the Abeta42(43) C-terminal-specific antibody BC05 in a mouse model of Alzheimer’s disease. Neurodegeneration Diseases, 2, 36–43.

    PubMed  CAS  Google Scholar 

  • Assini, A., Cammarata, S., Vitali, A., Colucci, M., Giliberto, L., Borghi, R., et al. (2004). Plasma levels of amyloid beta-protein 42 are increased in women with mild cognitive impairment. Neurology, 63, 828–831.

    PubMed  CAS  Google Scholar 

  • Bateman, R. J., Wen, G., Morris, J. C., & Holtzman, D. M. (2007). Fluctuations of CSF amyloid-beta levels: Implications for a diagnostic and therapeutic biomarker. Neurology, 68, 666–669.

    PubMed  CAS  Google Scholar 

  • Begley, D. J., & Brightman, M. W. (2003). Structural and functional aspects of the blood–brain barrier. Progress in Drug Research, 61, 39–78.

    PubMed  CAS  Google Scholar 

  • Biere, A. L., Ostaszewski, B., Stimson, E. R., Hyman, B. T., Maggio, J. E., & Selkoe, D. J. (1996). Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. Journal of Biological Chemistry, 271, 32916–32922.

    PubMed  CAS  Google Scholar 

  • Boyt, A. A., Taddei, T. K., Hallmayer, J., Helmerhorst, E., Gandy, S. E., Craft, S., et al. (2000). The effect of insulin and glucose on the plasma concentration of Alzheimer’s amyloid precursor protein. Neuroscience, 95, 727–734.

    PubMed  CAS  Google Scholar 

  • Braak, H., Braak, E., Ohm, T., & Bohl, J. (1989). Alzheimer’s disease: Mismatch between amyloid plaques and neuritic plaques. Neuroscience Letters, 103, 24–28.

    PubMed  CAS  Google Scholar 

  • Bush, A. I., Martins, R. N., Rumble, B., Moir, R., Fuller, S., Milward, E., et al. (1990). The amyloid precursor protein of Alzheimer’s disease is released by human platelets. Journal of Biological Chemistry, 265, 15977–15983.

    PubMed  CAS  Google Scholar 

  • Chauhan, V. P., Ray, I., Chauhan, A., & Wisniewski, H. M. (1999). Binding of gelsolin, a secretory protein, to amyloid beta-protein. Biochemical and Biophysical Research Communications, 258, 241–246.

    PubMed  CAS  Google Scholar 

  • Chen, M., Inestrosa, N. C., Ross, G. S., & Fernandez, H. L. (1995). Platelets are the primary source of amyloid beta-peptide in human blood. Biochemical and Biophysical Research Communications, 213, 96–103.

    PubMed  CAS  Google Scholar 

  • Choo-Smith, L. P., Garzon-Rodriguez, W., Glabe, C. G., & Surewicz, W. K. (1997). Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. Journal of Biological Chemistry, 272, 22987–22990.

    PubMed  CAS  Google Scholar 

  • Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., et al. (2003). Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28, 809–822.

    PubMed  CAS  Google Scholar 

  • Crystal, H., Dickson, D., Fuld, P., Masur, D., Scott, R., Mehler, M., et al. (1988). Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology, 38, 1682–1687.

    PubMed  CAS  Google Scholar 

  • Cummings, J. L., Doody, R., & Clark, C. (2007). Disease-modifying therapies for Alzheimer disease: Challenges to early intervention. Neurology, 69, 1622–1634.

    PubMed  Google Scholar 

  • DaSilva, K., Brown, M. E., Westaway, D., & McLaurin, J. (2006). Immunization with amyloid-beta using GM-CSF and IL-4 reduces amyloid burden and alters plaque morphology. Neurobiology of Disease, 23, 433–444.

    PubMed  CAS  Google Scholar 

  • de Leon, M. J., DeSanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., et al. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256, 205–223.

    PubMed  Google Scholar 

  • De Strooper, B. (2003). Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 38, 9–12.

    PubMed  Google Scholar 

  • Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nature Medicine, 9, 907–913.

    PubMed  CAS  Google Scholar 

  • Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., et al. (2004). LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron, 43, 333–344.

    PubMed  CAS  Google Scholar 

  • DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J. C., Paul, S. M., & Holtzman, D. M. (2001). Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 8850–8855.

    PubMed  CAS  Google Scholar 

  • DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M., & Holtzman, D. M. (2002a). Brain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science, 295, 2264–2267.

    PubMed  CAS  Google Scholar 

  • DeMattos, R. B., Bales, K. R., Parsadanian, M., O’Dell, M. A., Foss, E. M., Paul, S. M., et al. (2002b). Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. Journal of Neurochemistry, 81, 229–236.

    PubMed  CAS  Google Scholar 

  • Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5, 452–457.

    PubMed  CAS  Google Scholar 

  • Dodel, R. C., Du, Y., Depboylu, C., Hampel, H., Frolich, L., Haag, A., et al. (2004). Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 1472–1474.

    CAS  Google Scholar 

  • Dodel, R., Hampel, H., Depboylu, C., Lin, S., Gao, F., Schock, S., et al. (2002). Human antibodies against amyloid beta peptide: A potential treatment for Alzheimer’s disease. Annals of Neurology, 52, 253–256.

    PubMed  CAS  Google Scholar 

  • Englund, H., Sehlin, D., Johansson, A. S., Nilsson, L. N., Gellerfors, P., Paulie, S., et al. (2007). Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. Journal of Neurochemistry, 103, 334–345.

    PubMed  CAS  Google Scholar 

  • Ertekin-Taner, N., Graff-Radford, N., Younkin, L. H., Eckman, C., Adamson, J., Schaid, D. J., et al. (2001). Heritability of plasma amyloid beta in typical late-onset alzheimer’s disease pedigrees. Genetic Epidemiology, 21, 19–30.

    PubMed  CAS  Google Scholar 

  • Ertekin-Taner, N., Younkin, L. H., Yager, D. M., Parfitt, F., Baker, M. C., Asthana, S., et al. (2008). Plasma amyloid beta protein is elevated in late-onset alzheimer disease families. Neurology, 70, 596–606.

    PubMed  CAS  Google Scholar 

  • Evin, G., Zhu, A., Holsinger, R. M., Masters, C. L., & Li, Q. X. (2003). Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets. Journal of Neuroscience Research, 74, 386–392.

    PubMed  CAS  Google Scholar 

  • Fagan, A. M., Mintun, M. A., Mach, R. H., Lee, S. Y., Dence, C. S., Shah, A. R., et al. (2006). Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Annals of Neurology, 59, 512–519.

    PubMed  CAS  Google Scholar 

  • Fishel, M. A., Watson, G. S., Montine, T. J., Wang, Q., Green, P. S., Kulstad, J. J., et al. (2005). Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Archives of Neurology, 62, 1539–1544.

    PubMed  Google Scholar 

  • Freeman, S. H., Raju, S., Hyman, B. T., Frosch, M. P., & Irizarry, M. C. (2007). Plasma Abeta levels do not reflect brain Abeta levels. Journal of Neuropathology and Experimental Neurology, 66, 264–271.

    PubMed  CAS  Google Scholar 

  • Fukumoto, H., Tennis, M., Locascio, J. J., Hyman, B. T., Growdon, J. H., & Irizarry, M. C. (2003). Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Archives of Neurology, 60, 958–964.

    PubMed  Google Scholar 

  • Galasko, D. (2005). Biomarkers for Alzheimer’s disease—clinical needs and application. Journal of Alzheimers Disease, 8, 339–346.

    PubMed  CAS  Google Scholar 

  • Gasparini, L., Gouras, G. K., Wang, R., Gross, R. S., Beal, M. F., Greengard, P., et al. (2001). Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. Journal of Neuroscience, 21, 2561–2570.

    PubMed  CAS  Google Scholar 

  • Giedraitis, V., Sundelof, J., Irizarry, M. C., Garevik, N., Hyman, B. T., Wahlund, L. O., et al. (2007). The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neuroscience Letters, 427, 127–131.

    PubMed  CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706.

    PubMed  CAS  Google Scholar 

  • Golde, T. E., Eckman, C. B., & Younkin, S. G. (2000). Biochemical detection of Abeta isoforms: Implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochimica et Biophysica Acta, 1502, 172–187.

    PubMed  CAS  Google Scholar 

  • Graff-Radford, N. R., Crook, J. E., Lucas, J., Boeve, B. F., Knopman, D. S., Ivnik, R. J., et al. (2007). Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Archives of Neurology, 64, 354–362.

    PubMed  Google Scholar 

  • Gray, A. J., Sakaguchi, G., Shiratori, C., Becker, A. G., LaFrancois, J., Aisen, P. S., et al. (2007). Antibody against C-terminal Abeta selectively elevates plasma Abeta. NeuroReport, 18, 293–296.

    PubMed  CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    PubMed  CAS  Google Scholar 

  • Harris, M. I., Flegal, K. M., Cowie, C. C., Eberhardt, M. S., Goldstein, D. E., Little, R. R., et al. (1998). Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care, 21, 518–524.

    PubMed  CAS  Google Scholar 

  • Hartman, R. E., Izumi, Y., Bales, K. R., Paul, S. M., Wozniak, D. F., & Holtzman, D. M. (2005). Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 25, 6213–6220.

    PubMed  CAS  Google Scholar 

  • Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 38, 547–554.

    PubMed  CAS  Google Scholar 

  • Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., & Evin, G. (2002). Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Annals of Neurology, 51, 783–786.

    PubMed  CAS  Google Scholar 

  • Ida, N., Hartmann, T., Pantel, J., Schroder, J., Zerfass, R., Forstl, H., et al. (1996). Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. Journal of Biological Chemistry, 271, 22908–22914.

    PubMed  CAS  Google Scholar 

  • Irizarry, M. C. (2004). Biomarkers of Alzheimer disease in plasma. NeuroRx, 1, 226–234.

    PubMed  Google Scholar 

  • Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., & Hyman, B. T. (1997). APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. Journal of Neuropathology and Experimental Neurology, 56, 965–973.

    PubMed  CAS  Google Scholar 

  • Iwatsubo, T. (1998). Amyloid beta protein in plasma as a diagnostic marker for Alzheimer’s disease. Neurobiology of Aging, 19, 161–163.

    PubMed  CAS  Google Scholar 

  • Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.

    PubMed  CAS  Google Scholar 

  • Jensen, M., Schroder, J., Blomberg, M., Engvall, B., Pantel, J., Ida, N., et al. (1999). Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Annals of Neurology, 45, 504–511.

    PubMed  CAS  Google Scholar 

  • Joachim, C. L., Mori, H., & Selkoe, D. J. (1989). Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature, 341, 226–230.

    PubMed  CAS  Google Scholar 

  • Kanai, M., Matsubara, E., Isoe, K., Urakami, K., Nakashima, K., Arai, H., et al. (1998). Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: A study in Japan. Annals of Neurology, 44, 17–26.

    PubMed  CAS  Google Scholar 

  • Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144.

    PubMed  CAS  Google Scholar 

  • Kawarabayashi, T., Younkin, L. H., Saido, T. C., Shoji, M., Ashe, K. H., & Younkin, S. G. (2001). Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 21, 372–381.

    PubMed  CAS  Google Scholar 

  • Klunk, W. E., Pettegrew, J. W., & Abraham, D. J. (1989). Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. Journal of Histochemistry and Cytochemistry, 37, 1273–1281.

    PubMed  CAS  Google Scholar 

  • Kosaka, T., Imagawa, M., Seki, K., Arai, H., Sasaki, H., Tsuji, S., et al. (1997). The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology, 48, 741–745.

    PubMed  CAS  Google Scholar 

  • Koudinov, A., Matsubara, E., Frangione, B., & Ghiso, J. (1994). The soluble form of Alzheimer’s amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma. Biochemical and Biophysical Research Communications, 205, 1164–1171.

    PubMed  CAS  Google Scholar 

  • Kulstad, J. J., Green, P. S., Cook, D. G., Watson, G. S., Reger, M. A., Baker, L. D., et al. (2006). Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology, 66, 1506–1510.

    PubMed  CAS  Google Scholar 

  • Kuo, Y. M., Emmerling, M. R., Lampert, H. C., Hempelman, S. R., Kokjohn, T. A., Woods, A. S., et al. (1999). High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer’s disease. Biochemical and Biophysical Research Communications, 257, 787–791.

    PubMed  CAS  Google Scholar 

  • Kuo, Y. M., Kokjohn, T. A., Kalback, W., Luehrs, D., Galasko, D. R., Chevallier, N., et al. (2000a). Amyloid-beta peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma. Biochemical and Biophysical Research Communications, 268, 750–756.

    PubMed  CAS  Google Scholar 

  • Kuo, Y. M., Kokjohn, T. A., Watson, M. D., Woods, A. S., Cotter, R. J., Sue, L. I., et al. (2000b). Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. American Journal of Pathology, 156, 797–805.

    PubMed  CAS  Google Scholar 

  • Laird, F. M., Cai, H., Savonenko, A. V., Farah, M. H., He, K., Melnikova, T., et al. (2005). BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. Journal of Neuroscience, 25, 11693–11709.

    PubMed  CAS  Google Scholar 

  • Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.

    PubMed  CAS  Google Scholar 

  • Lemere, C. A., Spooner, E. T., LaFrancois, J., Malester, B., Mori, C., Leverone, J. F., et al. (2003). Evidence for peripheral clearance of cerebral Abeta protein following chronic, active Abeta immunization in PSAPP mice. Neurobiology of Disease, 14, 10–18.

    PubMed  CAS  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.

    PubMed  CAS  Google Scholar 

  • Levites, Y., Das, P., Price, R. W., Rochette, M. J., Kostura, L. A., McGowan, E. M., et al. (2006). Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 116, 193–201.

    PubMed  CAS  Google Scholar 

  • Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 269, 973–977.

    PubMed  CAS  Google Scholar 

  • Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology, 155, 853–862.

    PubMed  CAS  Google Scholar 

  • Maezawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., et al. (2008). Congo red and thioflavin-T analogs detect Abeta oligomers. Journal of Neurochemistry, 107, 457–468.

    Google Scholar 

  • Matsubara, E., Ghiso, J., Frangione, B., Amari, M., Tomidokoro, Y., Ikeda, Y., et al. (1999). Lipoprotein-free amyloidogenic peptides in plasma are elevated in patients with sporadic Alzheimer’s disease and Down’s syndrome. Annals of Neurology, 45, 537–541.

    PubMed  CAS  Google Scholar 

  • Matsumoto, Y., Yanase, D., Noguchi-Shinohara, M., Ono, K., Yoshita, M., & Yamada, M. (2007). Blood–brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-beta protein transport across the blood–brain barrier in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 23, 241–245.

    PubMed  CAS  Google Scholar 

  • Matsuoka, Y., Saito, M., LaFrancois, J., Saito, M., Gaynor, K., Olm, V., et al. (2003). Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. Journal of Neuroscience, 23, 29–33.

    PubMed  CAS  Google Scholar 

  • Matsuoka, Y., Shao, L., Debnath, M., Lafrancois, J., Becker, A., Gray, A., et al. (2005). An Abeta sequestration approach using non-antibody Abeta binding agents. Current Alzheimer Research, 2, 265–268.

    PubMed  CAS  Google Scholar 

  • Mayeux, R., Honig, L. S., Tang, M. X., Manly, J., Stern, Y., Schupf, N., et al. (2003). Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology, 61, 1185–1190.

    PubMed  CAS  Google Scholar 

  • Mayeux, R., Tang, M. X., Jacobs, D. M., Manly, J., Bell, K., Merchant, C., et al. (1999). Plasma amyloid beta-peptide 1-42 and incipient Alzheimer’s disease. Annals of Neurology, 46, 412–416.

    PubMed  CAS  Google Scholar 

  • McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., et al. (1999). Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.

    PubMed  CAS  Google Scholar 

  • Mehta, P. D., Pirttila, T., Mehta, S. P., Sersen, E. A., Aisen, P. S., & Wisniewski, H. M. (2000). Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Archives of Neurology, 57, 100–105.

    PubMed  CAS  Google Scholar 

  • Mehta, P. D., Pirttila, T., Patrick, B. A., Barshatzky, M., & Mehta, S. P. (2001). Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neuroscience Letters, 304, 102–106.

    PubMed  CAS  Google Scholar 

  • Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., et al. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature, 408, 982–985.

    PubMed  CAS  Google Scholar 

  • Morris, J. C., & Price, A. L. (2001). Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. Journal of Molecular Neuroscience, 17, 101–118.

    PubMed  CAS  Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers and Dementia, 1, 55–66.

    PubMed  Google Scholar 

  • Naslund, J., Schierhorn, A., Hellman, U., Lannfelt, L., Roses, A. D., Tjernberg, L. O., et al. (1994). Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proceedings of the National Academy of Sciences of the United States of America, 91, 8378–8382.

    PubMed  CAS  Google Scholar 

  • Neugroschl, J., & Davis, K. L. (2002). Biological markers in Alzheimer disease. American Journal of Geriatric Psychiatry, 10, 660–677.

    PubMed  Google Scholar 

  • Nystrom, F. H., & Quon, M. J. (1999). Insulin signalling: Metabolic pathways and mechanisms for specificity. Cellular Signalling, 11, 563–574.

    PubMed  CAS  Google Scholar 

  • Park, J. H., Gimbel, D. A., GrandPre, T., Lee, J. K., Kim, J. E., Li, W., et al. (2006a). Alzheimer precursor protein interaction with the Nogo–66 receptor reduces amyloid-beta plaque deposition. Journal of Neuroscience, 26, 1386–1395.

    PubMed  CAS  Google Scholar 

  • Park, J. H., Widi, G. A., Gimbel, D. A., Harel, N. Y., Lee, D. H., & Strittmatter, S. M. (2006b). Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice. Journal of Neuroscience, 26, 13279–13286.

    PubMed  CAS  Google Scholar 

  • Pesaresi, M., Lovati, C., Bertora, P., Mailland, E., Galimberti, D., Scarpini, E., et al. (2006). Plasma levels of beta-amyloid (1-42) in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 27, 904–905.

    PubMed  CAS  Google Scholar 

  • Price, D. L., & Sisodia, S. S. (1998). Mutant genes in familial Alzheimer’s disease and transgenic models. Annual Review of Neuroscience, 21, 479–505.

    PubMed  CAS  Google Scholar 

  • Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45, 358–368.

    PubMed  CAS  Google Scholar 

  • Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., et al. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. Journal of Biological Chemistry, 273, 32730–32738.

    PubMed  CAS  Google Scholar 

  • Quinn, K. A., Grimsley, P. G., Dai, Y. P., Tapner, M., Chesterman, C. N., & Owensby, D. A. (1997). Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. Journal of Biological Chemistry, 272, 23946–23951.

    PubMed  CAS  Google Scholar 

  • Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., et al. (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine, 13, 1359–1362.

    PubMed  CAS  Google Scholar 

  • Robinson, S. R., Bishop, G. M., & Munch, G. (2003). Alzheimer vaccine: Amyloid-beta on trial. Bioessays, 25, 283–288.

    PubMed  CAS  Google Scholar 

  • Sagare, A., Deane, R., Bell, R. D., Johnson, B., Hamm, K., Pendu, R., et al. (2007). Clearance of amyloid-beta by circulating lipoprotein receptors. Nature Medicine, 13, 1029–1031.

    PubMed  CAS  Google Scholar 

  • Saulino, M. F., & Schengrund, C. L. (1994). Differential accumulation of gangliosides by the brains of MPTP-lesioned mice. Journal of Neuroscience Research, 37, 384–391.

    PubMed  CAS  Google Scholar 

  • Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine, 2, 864–870.

    PubMed  CAS  Google Scholar 

  • Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited: Neuropathology of cognitively normal older adults. Neurology, 55, 370–376.

    PubMed  CAS  Google Scholar 

  • Schulingkamp, R. J., Pagano, T. C., Hung, D., & Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neuroscience and Biobehavioral Reviews, 24, 855–872.

    PubMed  CAS  Google Scholar 

  • Seabrook, T. J., Jiang, L., Thomas, K., & Lemere, C. A. (2006). Boosting with intranasal dendrimeric Abeta1-15 but not Abeta1-15 peptide leads to an effective immune response following a single injection of Abeta1-40/42 in APP-tg mice. J Neuroinflammation, 3, 14.

    PubMed  Google Scholar 

  • Selkoe, D. J. (1997). Alzheimer’s disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2001). Clearing the Brain’s Amyloid Cobwebs. Neuron, 32, 177–180.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2002). Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. Journal of Clinical Investigation, 110, 1375–1381.

    PubMed  CAS  Google Scholar 

  • Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760.

    PubMed  CAS  Google Scholar 

  • Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., et al. (2000). Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. Journal of Clinical Investigation, 106, 1489–1499.

    PubMed  CAS  Google Scholar 

  • Siemers, E. R., Dean, R. A., Friedrich, S., Ferguson-Sells, L., Gonzales, C., Farlow, M. R., et al. (2007). Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-beta after inhibition of gamma-secretase. Clinical Neuropharmacology, 30, 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Siemers, E. R., Quinn, J. F., Kaye, J., Farlow, M. R., Porsteinsson, A., Tariot, P., et al. (2006). Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology, 66, 602–604.

    PubMed  CAS  Google Scholar 

  • Silverberg, G. D., Mayo, M., Saul, T., Rubenstein, E., & McGuire, D. (2003). Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: A hypothesis. Lancet Neurology, 2, 506–511.

    PubMed  Google Scholar 

  • Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., et al. (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 402, 537–540.

    PubMed  CAS  Google Scholar 

  • Skovronsky, D. M., Lee, V. M., & Pratico, D. (2001). Amyloid precursor protein and amyloid beta peptide in human platelets. Role of cyclooxygenase and protein kinase C. Journal of Biological Chemistry, 276, 17036–17043.

    CAS  Google Scholar 

  • Slemmon, J. R., Painter, C. L., Nadanaciva, S., Catana, F., Cook, A., Motter, R., et al. (2007). Distribution of Abeta peptide in whole blood. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 846, 24–31.

    PubMed  CAS  Google Scholar 

  • Small, S. A., & Gandy, S. (2006). Sorting through the cell biology of Alzheimer’s disease: Intracellular pathways to pathogenesis. Neuron, 52, 15–31.

    PubMed  CAS  Google Scholar 

  • Stenh, C., Englund, H., Lord, A., Johansson, A. S., Almeida, C. G., Gellerfors, P., et al. (2005). Amyloid-beta oligomers are inefficiently measured by enzyme-linked immunosorbent assay. Annals of Neurology, 58, 147–150.

    PubMed  CAS  Google Scholar 

  • Sundelof, J., Giedraitis, V., Irizarry, M. C., Sundstrom, J., Ingelsson, E., Ronnemaa, E., et al. (2008). Plasma beta Amyloid and the Risk of Alzheimer Disease and Dementia in Elderly Men: A Prospective, Population-Based Cohort Study. Archives of Neurology, 65, 256–263.

    PubMed  Google Scholar 

  • Sunderland, T., Linker, G., Mirza, N., Putnam, K. T., Friedman, D. L., Kimmel, L. H., et al. (2003). Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA, 289, 2094–2103.

    PubMed  Google Scholar 

  • Takata, K., Hirata-Fukae, C., Becker, A. G., Chishiro, S., Gray, A. J., Nishitomi, K., et al. (2007). Deglycosylated anti-amyloid beta antibodies reduce microglial phagocytosis and cytokine production while retaining the capacity to induce amyloid beta sequestration. European Journal of Neuroscience, 26, 2458–2468.

    Google Scholar 

  • Tamaki, C., Ohtsuki, S., Iwatsubo, T., Hashimoto, T., Yamada, K., Yabuki, C., et al. (2006). Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharmaceutical Research, 23, 1407–1416.

    PubMed  CAS  Google Scholar 

  • Tamaki, C., Ohtsuki, S., & Terasaki, T. (2007). Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1-40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Molecular Pharmacology, 72, 850–855.

    PubMed  CAS  Google Scholar 

  • Tamaoka, A., Fukushima, T., Sawamura, N., Ishikawa, K., Oguni, E., Komatsuzaki, Y., et al. (1996). Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. Journal of the Neurological Sciences, 141, 65–68.

    PubMed  CAS  Google Scholar 

  • Tanzi, R. E., Moir, R. D., & Wagner, S. L. (2004). Clearance of Alzheimer’s Abeta peptide: The many roads to perdition. Neuron, 43, 605–608.

    PubMed  CAS  Google Scholar 

  • Tokuda, T., Fukushima, T., Ikeda, S., Sekijima, Y., Shoji, S., Yanagisawa, N., et al. (1997). Plasma levels of amyloid beta proteins Abeta1-40 and Abeta1-42(43) are elevated in Down’s syndrome. Annals of Neurology, 41, 271–273.

    PubMed  CAS  Google Scholar 

  • Troncoso, J. C., Martin, L. J., Dal Forno, G., & Kawas, C. H. (1996). Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiology of Aging, 17, 365–371.

    PubMed  CAS  Google Scholar 

  • van Oijen, M., Hofman, A., Soares, H. D., Koudstaal, P. J., & Breteler, M. M. (2006). Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: A prospective case-cohort study. Lancet Neurology, 5, 655–660.

    PubMed  Google Scholar 

  • Vanderstichele, H., Van Kerschaver, E., Hesse, C., Davidsson, P., Buyse, M. A., Andreasen, N., et al. (2000). Standardization of measurement of beta-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid, 7, 245–258.

    PubMed  CAS  Google Scholar 

  • Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.

    PubMed  CAS  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    PubMed  CAS  Google Scholar 

  • Watson, G. S., Peskind, E. R., Asthana, S., Purganan, K., Wait, C., Chapman, D., et al. (2003). Insulin increases CSF Abeta42 levels in normal older adults. Neurology, 60, 1899–1903.

    PubMed  CAS  Google Scholar 

  • Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 9, 3–4.

    PubMed  CAS  Google Scholar 

  • Zamora, E., Handisurya, A., Shafti-Keramat, S., Borchelt, D., Rudow, G., Conant, K., et al. (2006). Papillomavirus-like particles are an effective platform for amyloid-beta immunization in rabbits and transgenic mice. Journal of Immunology, 177, 2662–2670.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Johns Hopkins Alzheimer’s Disease Research Center (National Institutes of Health Grant PO1 AGO05146), John A. Hartford Foundation grant #2007-0005, Center of Excellence Renewal, at the Johns Hopkins School of Medicine, and an Anonymous Foundation. We would like to thank Dr. Abhay Moghekar and Dr. Philip Wong for their insightful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther S. Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, E.S., Troncoso, J.C. & Fangmark Tucker, S.M. Maximizing the Potential of Plasma Amyloid-Beta as a Diagnostic Biomarker for Alzheimer’s Disease. Neuromol Med 10, 195–207 (2008). https://doi.org/10.1007/s12017-008-8035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8035-0

Keywords

Navigation