Skip to main content

Advertisement

Log in

Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that “one size does not fit all” notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdolmaleki F, Kovanen PT, Mardani R, Gheibi-Hayat SM, Bo S, Sahebkar A (2020) Resolvins: emerging players in autoimmune and inflammatory diseases. Clin Rev Allergy Immunol 58:82–91

    CAS  PubMed  Google Scholar 

  2. Aupperle RL, Denney DR, Lynch SG, Carlson SE, Sullivan DK (2008) Omega-3 fatty acids and multiple sclerosis: relationship to depression. J Behav Med 31:127–135

    PubMed  Google Scholar 

  3. Baarnhielm M, Olsson T, Alfredsson L (2014) Fatty fish intake is associated with decreased occurrence of multiple sclerosis. Mult Scler 20:726–732

    PubMed  Google Scholar 

  4. Bang S, Xie YK, Zhang ZJ, Wang Z, Xu ZZ, Ji RR (2018) GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest 128:3568–3582

    PubMed  PubMed Central  Google Scholar 

  5. Bates D, Fawcett PR, Shaw DA, Weightman D (1978) Polyunsaturated fatty acids in treatment of acute remitting multiple sclerosis. Br Med J 2:1390–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Benabdoun HA, Kulbay M, Rondon EP, Vallieres F, Shi Q, Fernandes J, Fahmi H, Benderdour M (2019) In vitro and in vivo assessment of the proresolutive and antiresorptive actions of resolvin D1: relevance to arthritis. Arthritis Res Ther 21:72

    PubMed  PubMed Central  Google Scholar 

  7. Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB (2011) Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. J Immunol 187:1957–1969

    CAS  PubMed  Google Scholar 

  8. Berr C, Puel J, Clanet M, Ruidavets JB, Mas JL, Alperovitch A (1989) Risk factors in multiple sclerosis: a population-based case-control study in Hautes-Pyrenees, France. Acta Neurol Scand 80:46–50

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bjornevik K, Chitnis T, Ascherio A, Munger KL (2017) Polyunsaturated fatty acids and the risk of multiple sclerosis. Mult Scler 23:1830–1838

    PubMed  PubMed Central  Google Scholar 

  10. Bjornevik K, Myhr KM, Beiske A, Bjerve KS, Holmoy T, Hovdal H, Midgard R, Riise T, Wergeland S, Torkildsen O (2019) Alpha-linolenic acid is associated with MRI activity in a prospective cohort of multiple sclerosis patients. Mult Scler 25:987–993

    CAS  PubMed  Google Scholar 

  11. Briggs FBS, Yu JC, Davis MF, Jiangyang J, Fu S, Parrotta E, Gunzler DD, Ontaneda D (2019) Multiple sclerosis risk factors contribute to onset heterogeneity. Mult Scler Relat Dis 28:11–16

    Google Scholar 

  12. Brinar VV, Habek M (2010) Rare infections mimicking MS. Clin Neurol Neurosurg 112:625–628

    PubMed  Google Scholar 

  13. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ (2014) Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 83:1022–1024

    PubMed  PubMed Central  Google Scholar 

  14. Buckley CD, Gilroy DW, Serhan CN (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40:315–327

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chari DM (2007) Remyelination in multiple sclerosis. Int Rev Neurobiol 79:589–620

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiang N, Serhan CN (2017) Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Asp Med 58:114–129

    CAS  Google Scholar 

  17. Chiang N, Libreros S, Norris PC, de la Rosa X, Serhan CN (2019) Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J Clin Invest 129:5294–5311

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiurchiu V (2014) Novel targets in multiple sclerosis: to oxidative stress and beyond. Curr Top Med Chem 14:2590–2599

    CAS  PubMed  Google Scholar 

  19. Chiurchiu V, Leuti A, Dalli J, Jacobsson A, Battistini L, Maccarrone M, Serhan CN (2016) Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci Transl Med 8:353ra111

    PubMed  PubMed Central  Google Scholar 

  20. Chiurchiu V, Leuti A, Maccarrone M (2018) Bioactive lipids and chronic inflammation: managing the fire within. Front Immunol 9:38

    PubMed  PubMed Central  Google Scholar 

  21. Claria J, Dalli J, Yacoubian S, Gao F, Serhan CN (2012) Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J Immunol 189:2597–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  22. ClinicalTrials.gov (2018) Specialized pro-resolving lipid mediators in the resolution of multiple sclerosis US National Library of Medicine Identifier NCT03492606; https://clinicaltrials.gov/ct2/home. Accessed Nov 2019

  23. Comi G (2008) Clinically isolated syndrome: the rationale for early treatment. Nat Clin Pract Neurol 4:234–235

    PubMed  Google Scholar 

  24. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    CAS  PubMed  Google Scholar 

  25. Cortese M, Riise T, Bjornevik K, Holmoy T, Kampman MT, Magalhaes S, Pugliatti M, Wolfson C, Myhr KM (2015) Timing of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: the EnvIMS study. Mult Scler 21:1856–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cotran RVK, Collins T (2009) Robbins pathologic basis of disease. Saunders, Philadelphia

    Google Scholar 

  27. Crean D, Godson C (2015) Specialised lipid mediators and their targets. Semin Immunol 27:169–176

  28. Cunnane SC, Ho SY, Dore-Duffy P, Ells KR, Horrobin DF (1989) Essential fatty acid and lipid profiles in plasma and erythrocytes in patients with multiple sclerosis. Am J Clin Nutr 50:801–806

    CAS  PubMed  Google Scholar 

  29. Dalli J, Serhan CN (2017) Pro-resolving mediators in regulating and conferring macrophage function. Front Immunol 8:1400

    PubMed  PubMed Central  Google Scholar 

  30. Dalli J, Colas RA, Serhan CN (2013) Novel n-3 immunoresolvents: structures and actions. Sci Rep 3:1940

    PubMed  PubMed Central  Google Scholar 

  31. Dalli J, Chiang N, Serhan CN (2015) Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat Med 21:1071–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalli J, Ramon S, Norris PC, Colas RA, Serhan CN (2015) Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. FASEB J 29:2120–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  33. de-Brito NM, da-Costa HC, Simoes RL, Barja-Fidalgo C (2019) Lipoxin-induced phenotypic changes in CD115(+)LY6C(hi) monocytes TAM precursors inhibits tumor development. Front Oncol 9:540

    PubMed  PubMed Central  Google Scholar 

  34. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558

    CAS  PubMed  Google Scholar 

  35. Derada Troletti C, Fontijn RD, Gowing E, Charabati M, van Het Hof B, Didouh I, van der Pol SMA, Geerts D, Prat A, van Horssen J, Kooij G, de Vries HE (2019) Inflammation-induced endothelial to mesenchymal transition promotes brain endothelial cell dysfunction and occurs during multiple sclerosis pathophysiology. Cell Death Dis 10:45

    PubMed  PubMed Central  Google Scholar 

  36. Dmitrieva N, Suess G, Shirley R (2014) Resolvins RvD1 and 17(R)-RvD1 alleviate signs of inflammation in a rat model of endometriosis. Fertil Steril 102:1191–1196

    CAS  PubMed  Google Scholar 

  37. Duffney PF, Falsetta ML, Rackow AR, Thatcher TH, Phipps RP, Sime PJ (2018) Key roles for lipid mediators in the adaptive immune response. J Clin Invest 128:2724–2731

    PubMed  PubMed Central  Google Scholar 

  38. Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, Urrutia A, Bisiaux A, Labrie ST, Dubois A, Boneca IG, Delval C, Thomas S, Rogge L, Schmolz M, Quintana-Murci L, Albert ML, Milieu Interieur C (2014) Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 40:436–450

    CAS  PubMed  Google Scholar 

  39. Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93:1–12

    PubMed  Google Scholar 

  40. Duvall MG, Levy BD (2016) DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol 785:144–155

    CAS  PubMed  Google Scholar 

  41. Dyment DA, Ebers GC, Sadovnick AD (2004) Genetics of multiple sclerosis. Lancet Neurol 3:104–110

    CAS  PubMed  Google Scholar 

  42. Eickmeier O, Seki H, Haworth O, Hilberath JN, Gao F, Uddin M, Croze RH, Carlo T, Pfeffer MA, Levy BD (2013) Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol 6:256–266

    CAS  PubMed  Google Scholar 

  43. El Kholy K, Freire M, Chen T, Van Dyke TE (2018) Resolvin E1 promotes bone preservation under inflammatory conditions. Front Immunol 9:1300

    PubMed  PubMed Central  Google Scholar 

  44. El-behi M, Rostami A, Ciric B (2010) Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 5:189–197

    PubMed  PubMed Central  Google Scholar 

  45. Etemadifar M, Ghourchian S, Sabeti F, Akbari M, Etemadifar F, Salari M (2019) The higher prevalence of multiple sclerosis among Iranian Georgians; new clues to the role of genetic factors. Rev Neurol 176:113–117

  46. Farinotti M, Vacchi L, Simi S, Di Pietrantonj C, Brait L, Filippini G (2012) Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev 12:CD004192

    PubMed  Google Scholar 

  47. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fredman G, Serhan CN (2011) Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem J 437:185–197

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fredman G, Li Y, Dalli J, Chiang N, Serhan CN (2012) Self-limited versus delayed resolution of acute inflammation: temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2:639

    PubMed  PubMed Central  Google Scholar 

  50. Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA, Dorweiler B, Connolly ES, Solomon R, Jones DM, Heyer EJ, Spite M, Tabas I (2016) An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 7:12859

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gaby A (2013) Multiple sclerosis. Glob Adv Health Med 2:50–56

    PubMed  PubMed Central  Google Scholar 

  52. Ghadirian P, Jain M, Ducic S, Shatenstein B, Morisset R (1998) Nutritional factors in the aetiology of multiple sclerosis: a case-control study in Montreal, Canada. Int J Epidemiol 27:845–852

    CAS  PubMed  Google Scholar 

  53. Gong J, Liu H, Wu J, Qi H, Wu ZY, Shu HQ, Li HB, Chen L, Wang YX, Li B, Tang M, Ji YD, Yuan SY, Yao SL, Shang Y (2015) Maresin 1 prevents lipopolysaccharide-induced neutrophil survival and accelerates resolution of acute lung injury. Shock 44:371–380

    CAS  PubMed  Google Scholar 

  54. Gul S, Smith AD, Thompson RH, Wright HP, Zilkha KJ (1970) Fatty acid composition of phospholipids from platelets and erythrocytes in multiple sclerosis. J Neurol Neurosurg Psychiatry 33:506–510

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Han CZ, Ravichandran KS (2011) Metabolic connections during apoptotic cell engulfment. Cell 147:1442–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76

    CAS  PubMed  Google Scholar 

  57. Hellmann J, Tang Y, Kosuri M, Bhatnagar A, Spite M (2011) Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J 25:2399–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Holman RT, Johnson SB, Kokmen E (1989) Deficiencies of polyunsaturated fatty acids and replacement by nonessential fatty acids in plasma lipids in multiple sclerosis. Proc Natl Acad Sci U S A 86:4720–4724

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hong S, Tian H, Lu Y, Laborde JM, Muhale FA, Wang Q, Alapure BV, Serhan CN, Bazan NG (2014) Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes. Am J Physiol Cell Physiol 307:C1058–C1067

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsiao HM, Thatcher TH, Colas RA, Serhan CN, Phipps RP, Sime PJ (2015) Resolvin D1 reduces emphysema and chronic inflammation. Am J Pathol 185:3189–3201

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jelinek GA, Hadgkiss EJ, Weiland TJ, Pereira NG, Marck CH, van der Meer DM (2013) Association of fish consumption and omega 3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis. Int J Neurosci 123:792–800

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kampman MT, Wilsgaard T, Mellgren SI (2007) Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic circle. J Neurol 254:471–477

    CAS  PubMed  Google Scholar 

  63. Karussis D (2014) The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun 48-49:134–142

    CAS  PubMed  Google Scholar 

  64. Kesselring J, Beer S (2005) Symptomatic therapy and neurorehabilitation in multiple sclerosis. Lancet Neurol 4:643–652

    PubMed  Google Scholar 

  65. Klineova S, Lublin FD (2018) Clinical course of multiple sclerosis. Cold Spring Harb Perspect Med 8:a028928

  66. Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J, Group MS, European Multiple Sclerosis P (2017) New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler 23:1123–1136

    PubMed  PubMed Central  Google Scholar 

  67. Koch-Henriksen N, Sorensen PS (2010) The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 9:520–532

    PubMed  Google Scholar 

  68. Kohli P, Levy BD (2009) Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol 158:960–971

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kooij G, Chiurchiù V, Norris P, Olsson T, Iacobeus E, Teunissen C, Eggen B, Engelhardt B, de Vries H, Serhan C (2019) Specialized pro-resolving lipid mediator production in the cerebrospinal fluid is impaired in multiple sclerosis: implications for its pathogenesis and therapy ECTRIMS Online Library 279540

  70. Kooij G, Derada Troletti C, Leuti A, Norris PC, Riley I, Albanese M, Ruggieri S, Libreros S, van der Pol SMA, van Het Hof B, Schell Y, Guerrera G, Buttari F, Mercuri NB, Centonze D, Gasperini C, Battistini L, de Vries HE, Serhan CN, Chiurchiu V (2019) Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica

  71. Krashia P, Cordella A, Nobili A, La Barbera L, Federici M, Leuti A, Campanelli F, Natale G, Marino G, Calabrese V, Vedele F, Ghiglieri V, Picconi B, Di Lazzaro G, Schirinzi T, Sancesario G, Casadei N, Riess O, Bernardini S, Pisani A, Calabresi P, Viscomi MT, Serhan CN, Chiurchiu V, D'Amelio M, Mercuri NB (2019) Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun 10:3945

    PubMed  PubMed Central  Google Scholar 

  72. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN (2012) Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol 180:2018–2027

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar R, Clerc AC, Gori I, Russell R, Pellegrini C, Govender L, Wyss JC, Golshayan D, Canny GO (2014) Lipoxin A(4) prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E(2) production and estrogen signaling. PLoS One 9:e89742

    PubMed  PubMed Central  Google Scholar 

  74. Kumar V, Abbas AK, Fausto N, Aster JC (2014) Robbins and Cotran pathologic basis of disease, professional edition e-book. Elsevier Health Sciences

  75. Laguna-Fernandez A, Checa A, Carracedo M, Artiach G, Petri MH, Baumgartner R, Forteza MJ, Jiang X, Andonova T, Walker ME, Dalli J, Arnardottir H, Gistera A, Thul S, Wheelock CE, Paulsson-Berne G, Ketelhuth DFJ, Hansson GK, Back M (2018) ERV1/ChemR23 signaling protects against atherosclerosis by modifying oxidized low-density lipoprotein uptake and phagocytosis in macrophages. Circulation 138:1693–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333:1–4

    CAS  PubMed  Google Scholar 

  77. Leuti A, Maccarrone M, Chiurchiu V (2019) Proresolving lipid mediators: endogenous modulators of oxidative stress. Oxid Med Cell Longev 2019:1–12

  78. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612–619

    CAS  PubMed  Google Scholar 

  79. Li Y, Dalli J, Chiang N, Baron RM, Quintana C, Serhan CN (2013) Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators. Immunity 39:885–898

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu G, Fiala M, Mizwicki MT, Sayre J, Magpantay L, Siani A, Mahanian M, Chattopadhyay M, La Cava A, Wiedau-Pazos M (2012) Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1. Am J Neurodegener Dis 1:60–74

    PubMed  PubMed Central  Google Scholar 

  81. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O'Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stuve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286

    PubMed  PubMed Central  Google Scholar 

  82. Luo B, Han F, Xu K, Wang J, Liu Z, Shen Z, Li J, Liu Y, Jiang M, Zhang ZY, Zhang Z (2016) Resolvin D1 programs inflammation resolution by increasing TGF-beta expression induced by dying cell clearance in experimental autoimmune neuritis. J Neurosci 36:9590–9603

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, Bien CG, Bauer J, Lassmann H (2018) The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141:2066–2082

    PubMed  PubMed Central  Google Scholar 

  84. Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

    CAS  PubMed  Google Scholar 

  85. Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DF, Calixto JB (2013) Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. J Immunol 191:4288–4298

    CAS  PubMed  Google Scholar 

  86. Miller JR (2004) The importance of early diagnosis of multiple sclerosis. J Manag Care Pharm 10:S4–S11

    PubMed  Google Scholar 

  87. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    CAS  Google Scholar 

  88. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    CAS  PubMed  Google Scholar 

  89. Nayak S, Matheis RJ, Schoenberger NE, Shiflett SC (2003) Use of unconventional therapies by individuals with multiple sclerosis. Clin Rehabil 17:181–191

    PubMed  Google Scholar 

  90. Nightingale S, Woo E, Smith AD, French JM, Gale MM, Sinclair HM, Bates D, Shaw DA (1990) Red blood cell and adipose tissue fatty acids in mild inactive multiple sclerosis. Acta Neurol Scand 82:43–50

    CAS  PubMed  Google Scholar 

  91. Norling LV, Headland SE, Dalli J, Arnardottir HH, Haworth O, Jones HR, Irimia D, Serhan CN, Perretti M (2016) Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI insight 1:e85922

    PubMed  PubMed Central  Google Scholar 

  92. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    CAS  PubMed  Google Scholar 

  93. Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122:1180–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Oehler B, Mohammadi M, Perpina Viciano C, Hackel D, Hoffmann C, Brack A, Rittner HL (2017) Peripheral interaction of Resolvin D1 and E1 with opioid receptor antagonists for antinociception in inflammatory pain in rats. Front Mol Neurosci 10:242

    PubMed  PubMed Central  Google Scholar 

  95. Ohira T, Arita M, Omori K, Recchiuti A, Van Dyke TE, Serhan CN (2010) Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J Biol Chem 285:3451–3461

    CAS  PubMed  Google Scholar 

  96. Oksenberg JR, Baranzini SE (2010) Multiple sclerosis genetics--is the glass half full, or half empty? Nat Rev Neurol 6:429–437

    PubMed  Google Scholar 

  97. Olsen SA (2009) A review of complementary and alternative medicine (CAM) by people with multiple sclerosis. Occup Ther Int 16:57–70

    PubMed  Google Scholar 

  98. Olsson T, Barcellos LF, Alfredsson L (2017) Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13:25–36

    CAS  PubMed  Google Scholar 

  99. Orton SM, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, Ebers GC, Canadian Collaborative Study G (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 5:932–936

    PubMed  Google Scholar 

  100. Penesová A, Dean Z, Kollár B, Havranová A, Imrich R, Vlček M, Rádiková Ž (2018) Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol Res 67:521–533

    PubMed  Google Scholar 

  101. Perretti M, Norling LV (2017) Actions of SPM in regulating host responses in arthritis. Mol Asp Med 58:57–64

    CAS  Google Scholar 

  102. Pittock SJ, Lucchinetti CF (2007) The pathology of MS: new insights and potential clinical applications. Neurologist 13:45–56

    PubMed  Google Scholar 

  103. Poisson LM, Suhail H, Singh J, Datta I, Denic A, Labuzek K, Hoda MN, Shankar A, Kumar A, Cerghet M, Elias S, Mohney RP, Rodriguez M, Rattan R, Mangalam AK, Giri S (2015) Untargeted plasma metabolomics identifies endogenous metabolite with drug-like properties in chronic animal model of multiple sclerosis. J Biol Chem 290:30697–30712

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Popescu BF, Pirko I, Lucchinetti CF (2013) Pathology of multiple sclerosis: where do we stand? Continuum 19:901–921

    PubMed  Google Scholar 

  105. Pruss H, Rosche B, Sullivan AB, Brommer B, Wengert O, Gronert K, Schwab JM (2013) Proresolution lipid mediators in multiple sclerosis - differential, disease severity-dependent synthesis - a clinical pilot trial. PLoS One 8:e55859

    PubMed  PubMed Central  Google Scholar 

  106. Ramirez-Ramirez V, Macias-Islas MA, Ortiz GG, Pacheco-Moises F, Torres-Sanchez ED, Sorto-Gomez TE, Cruz-Ramos JA, Orozco-Avina G, Celis de la Rosa AJ (2013) Efficacy of fish oil on serum of TNF alpha, IL-1 beta, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxidative Med Cell Longev 2013:709493

    CAS  Google Scholar 

  107. Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN (2011) MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J 25:544–560

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Reich DS, Lucchinetti CF, Calabresi PA (2018) Multiple sclerosis. N Engl J Med 378:169–180

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Riccio P, Rossano R, Larocca M, Trotta V, Mennella I, Vitaglione P, Ettorre M, Graverini A, De Santis A, Di Monte E, Coniglio MG (2016) Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: a pilot study. Exp Biol Med 241:620–635

    CAS  Google Scholar 

  110. Rito Y, Torre-Villalvazo I, Flores J, Rivas V, Corona T (2018) Epigenetics in multiple sclerosis: molecular mechanisms and dietary intervention. Cent Nerv Syst Agents Med Chem 18:8–15

    CAS  PubMed  Google Scholar 

  111. Rius B, Duran-Guell M, Flores-Costa R, Lopez-Vicario C, Lopategi A, Alcaraz-Quiles J, Casulleras M, Lozano JJ, Titos E, Claria J (2017) The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress. FASEB J 31:5384–5398

    CAS  PubMed  Google Scholar 

  112. Robinson AP, Harp CT, Noronha A, Miller SD (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    PubMed  PubMed Central  Google Scholar 

  113. Rogerio AP, Haworth O, Croze R, Oh SF, Uddin M, Carlo T, Pfeffer MA, Priluck R, Serhan CN, Levy BD (2012) Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J Immunol 189:1983–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rolak LA, Fleming JO (2007) The differential diagnosis of multiple sclerosis. Neurologist 13:57–72

    PubMed  Google Scholar 

  115. Rossi S, Di Filippo C, Gesualdo C, Potenza N, Russo A, Trotta MC, Zippo MV, Maisto R, Ferraraccio F, Simonelli F, D'Amico M (2015) Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. Mediat Inflamm 2015:149381

    CAS  Google Scholar 

  116. Ruiz F, Vigne S, Pot C (2019) Resolution of inflammation during multiple sclerosis. Semin Immunopathol 41:711–726

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Saidha S, Eckstein C, Calabresi PA (2012) New and emerging disease modifying therapies for multiple sclerosis. Ann N Y Acad Sci 1247:117–137

    CAS  PubMed  Google Scholar 

  118. Schwanke RC, Marcon R, Bento AF, Calixto JB (2016) EPA- and DHA-derived resolvins' actions in inflammatory bowel disease. Eur J Pharmacol 785:156–164

    CAS  PubMed  Google Scholar 

  119. Serhan CN (2004) A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol 122:305–321

    CAS  PubMed  Google Scholar 

  120. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137

    CAS  PubMed  Google Scholar 

  121. Serhan CN (2011) The resolution of inflammation: the devil in the flask and in the details. FASEB J 25:1441–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Serhan CN (2017) Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Asp Med 58:1–11

    Google Scholar 

  124. Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31:1273–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Serhan CN, Chiang N (2004) Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: entree for resoleomics. Rheum Dis Clin N Am 30:69–95

    Google Scholar 

  126. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    CAS  PubMed  Google Scholar 

  127. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192:1197–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Serhan CN, Arita M, Hong S, Gotlinger K (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132

    CAS  PubMed  Google Scholar 

  129. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Serhan CN, Krishnamoorthy S, Recchiuti A, Chiang N (2011) Novel anti-inflammatory--pro-resolving mediators and their receptors. Curr Top Med Chem 11:629–647

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Serhan CN, Dalli J, Karamnov S, Choi A, Park CK, Xu ZZ, Ji RR, Zhu M, Petasis NA (2012) Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J 26:1755–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Serhan CN, Chiang N, Dalli J, Levy BD (2014) Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol 7:a016311

    PubMed  Google Scholar 

  133. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N (2015) Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta 1851:397–413

    CAS  PubMed  Google Scholar 

  134. Shang P, Zhang Y, Ma D, Hao Y, Wang X, Xin M, Zhang Y, Zhu M, Feng J (2019) Inflammation resolution and specialized pro-resolving lipid mediators in CNS diseases. Expert Opin Ther Targets 23:967–986

    CAS  PubMed  Google Scholar 

  135. Sheedy FJ, O'Neill LA (2008) Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis 67(Suppl 3):iii50–iii55

    CAS  PubMed  Google Scholar 

  136. Sonobe Y, Jin S, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2007) Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Tohoku J Exp Med 213:329–339

    CAS  PubMed  Google Scholar 

  137. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    CAS  PubMed  Google Scholar 

  138. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636

    PubMed  Google Scholar 

  139. Titos E, Rius B, Lopez-Vicario C, Alcaraz-Quiles J, Garcia-Alonso V, Lopategi A, Dalli J, Lozano JJ, Arroyo V, Delgado S, Serhan CN, Claria J (2016) Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J Immunol 197:3360–3370

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Torkildsen O, Wergeland S, Bakke S, Beiske AG, Bjerve KS, Hovdal H, Midgard R, Lilleas F, Pedersen T, Bjornara B, Dalene F, Kleveland G, Schepel J, Olsen IC, Myhr KM (2012) Omega-3 fatty acid treatment in multiple sclerosis (OFAMS study): a randomized, double-blind, placebo-controlled trial. Arch Neurol 69:1044–1051

    PubMed  Google Scholar 

  141. Torkildsen O, Myhr KM, Bo L (2016) Disease-modifying treatments for multiple sclerosis - a review of approved medications. Eur J Neurol 23(Suppl 1):18–27

    PubMed  Google Scholar 

  142. Tourki B, Halade G (2017) Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. FASEB J 31:4226–4239

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    CAS  PubMed  Google Scholar 

  144. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    CAS  PubMed  Google Scholar 

  145. Viola JR, Lemnitzer P, Jansen Y, Csaba G, Winter C, Neideck C, Silvestre-Roig C, Dittmar G, Doring Y, Drechsler M, Weber C, Zimmer R, Cenac N, Soehnlein O (2016) Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ Res 119:1030–1038

    CAS  PubMed  Google Scholar 

  146. Wang L, Yuan R, Yao C, Wu Q, Christelle M, Xie W, Zhang X, Sun W, Wang H, Yao S (2014) Effects of resolvin D1 on inflammatory responses and oxidative stress of lipopolysaccharide-induced acute lung injury in mice. Chin Med J 127:803–809

    CAS  PubMed  Google Scholar 

  147. Wang Q, Zheng X, Cheng Y, Zhang YL, Wen HX, Tao Z, Li H, Hao Y, Gao Y, Yang LM, Smith FG, Huang CJ, Jin SW (2014) Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel, Na,K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury. J Immunol 192:3765–3777

    CAS  PubMed  Google Scholar 

  148. Wang X, Zhu M, Hjorth E, Cortes-Toro V, Eyjolfsdottir H, Graff C, Nennesmo I, Palmblad J, Eriksdotter M, Sambamurti K, Fitzgerald JM, Serhan CN, Granholm AC, Schultzberg M (2015) Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11(40–50):e41–e42

    Google Scholar 

  149. Wang X, Jiao W, Lin M, Lu C, Liu C, Wang Y, Ma D, Wang X, Yin P, Feng J, Zhu J, Zhu M (2019) Resolution of inflammation in neuromyelitis optica spectrum disorders. Mult Scler Relat Dis 27:34–41

    Google Scholar 

  150. Weinstock-Guttman B, Baier M, Park Y, Feichter J, Lee-Kwen P, Gallagher E, Venkatraman J, Meksawan K, Deinehert S, Pendergast D, Awad AB, Ramanathan M, Munschauer F, Rudick R (2005) Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids 73:397–404

    CAS  PubMed  Google Scholar 

  151. Wergeland S, Torkildsen O, Bo L, Myhr KM (2012) Polyunsaturated fatty acids in multiple sclerosis therapy. Acta Neurol Scand Suppl:70–75

  152. Xia H, Chen L, Liu H, Sun Z, Yang W, Yang Y, Cui S, Li S, Wang Y, Song L, Abdelgawad AF, Shang Y, Yao S (2017) Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep 7:99

    PubMed  PubMed Central  Google Scholar 

  153. Yadav V, Shinto L, Bourdette D (2010) Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev Clin Immunol 6:381–395

    PubMed  PubMed Central  Google Scholar 

  154. Yang T, Xu G, Newton PT, Chagin AS, Mkrtchian S, Carlstrom M, Zhang XM, Harris RA, Cooter M, Berger M, Maddipati KR, Akassoglou K, Terrando N (2019) Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br J Anaesth 122:350–360

    CAS  PubMed  Google Scholar 

  155. Yaxin W, Shanglong Y, Huaqing S, Hong L, Shiying Y, Xiangdong C, Ruidong L, Xiaoying W, Lina G, Yan W (2014) Resolvin D1 attenuates lipopolysaccharide induced acute lung injury through CXCL-12/CXCR4 pathway. J Surg Res 188:213–221

    PubMed  Google Scholar 

  156. Zhang Y, Zhou Y, van der Mei IAF, Simpson S, Ponsonby AL, Lucas RM, Tettey P, Charlesworth J, Kostner K, Taylor BV, Ausimmune/AusLong Investigators G (2019) Lipid-related genetic polymorphisms significantly modulate the association between lipids and disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 90:636–641

    PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Insha Zahoor is highly indebted to her family for being extraordinarily supportive through every odd of life and handling every worst situation when she was not available for them. It takes many sacrifices at the family level to pursue a career in research, especially for a caregiver. I dedicate this piece of writing to my little brother Imran Zahoor (Imu) who is suffering from seizure disorder with mental retardation and a plethora of psychiatric ailments. In serving as a caregiver for him, I have realized the impact that effective therapeutic research interventions can make on the life of a patient and his caregivers.

The authors thank Prof. Charles N. Serhan, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA, for his valuable suggestions while reviewing this manuscript.

Funding

This work was supported by the National Multiple Sclerosis Society (US) Research Grant (RG-1807-31964), the US National Institutes of Health Grant (R01 NS112727, AI144004), and Henry Ford Hospital Internal Grant (A10270) to SG. The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

Both IZ and SG conceived the idea for the paper. IZ performed the literature search, and data analysis and compiled the manuscript. SG provided helpful suggestions in the preparation of this manuscript and reviewed the draft before approval for publication.

Corresponding authors

Correspondence to Insha Zahoor or Shailendra Giri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

No informed consent was required to prepare the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoor, I., Giri, S. Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clinic Rev Allerg Immunol 60, 147–163 (2021). https://doi.org/10.1007/s12016-020-08796-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08796-4

Keywords

Navigation