Skip to main content

Advertisement

Log in

Gorham-Stout Disease: a Clinical Case Report and Immunological Mechanisms in Bone Erosion

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Gorham-Stout disease (GSD) is a rare condition of osteolysis with excessive lymphangiogenesis within bone tissue. The etiology of this condition remains unknown but seems to affect mainly children and young adults of both genders all over the world. Unfortunately, there is no standardized method for diagnosis; however, histopathology remains as the gold standard. This condition is often misdiagnosed due to its varying clinical presentations from case-to-case. Here, we report the case of an 8-year-old girl who presented with chronic mandibular pain during mastication and received multiple antibiotic treatment due to infectious origin suspicion. After integrating information from clinical manifestations, radiographic, laboratory, and histopathology information, she was diagnosed with GSD. Additionally, due to the lack of literature with respect to insights into biological mechanisms and standardized treatment for this condition, we underwent a literature revision to provide information related to activation of cells from the immune system, such as macrophages, T-cells, and dendritic cells, and their contribution to the lymphangiogenesis, angiogenesis, and osteoclastogenic process in GSD. It is important to consider these mechanisms in patients with GSD, especially since new studies performed in earlier stages are required to confirm their use as novel diagnostic tools and find new possibilities for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellati R et al (2016) Novel approach of treating Gorham-Stout disease in the humerus—case report and review of literature. Eur Rev Med Pharmacol Sci 20(3):426–432

    CAS  PubMed  Google Scholar 

  2. Nikolaou VS et al (2014) Vanishing bone disease (Gorham-Stout syndrome): a review of a rare entity. World J Orthop 5(5):694–698

    Article  PubMed  PubMed Central  Google Scholar 

  3. Evrenos MK et al (2016) Case report: Gorham-Stoute syndrome with involvement of majority of mandible, and partial maxillary, temporal and zygomatic bones. J Maxillofac Oral Surg 15(Suppl 2):335–338

    Article  PubMed  Google Scholar 

  4. Ruggieri P et al (2011) Gorham-Stout disease: the experience of the Rizzoli Institute and review of the literature. Skelet Radiol 40(11):1391–1397

    Article  Google Scholar 

  5. Gorham LW, Stout AP (1955) Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone); its relation to hemangiomatosis. J Bone Joint Surg Am 37-A(5):985–1004

    Article  CAS  PubMed  Google Scholar 

  6. Heffez L et al (1983) Perspectives on massive osteolysis. Report of a case and review of the literature. Oral Surg Oral Med Oral Pathol 55(4):331–343

    Article  CAS  PubMed  Google Scholar 

  7. Kokosis G et al (2016) Mandibular reconstruction using the free vascularized fibula graft: an overview of different modifications. Arch Plast Surg 43(1):3–9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abdulai A-E et al (2014) Vanishing bone (Gorham’s) disease of the mandible: a case report. Sch J Med Case Rep 2(3):183–187

    Google Scholar 

  9. Colucci S et al (2006) Gorham-Stout syndrome: a monocyte-mediated cytokine propelled disease. J Bone Miner Res 21(2):207–218

    Article  CAS  PubMed  Google Scholar 

  10. Canalis E (2010) Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab 95(4):1469–1504

    Article  Google Scholar 

  11. Yuan F (2012) Type 17 T-helper cells might be a promising therapeutic target for osteoporosis. Mol Biol Rep 39(1):771–774

    Article  CAS  PubMed  Google Scholar 

  12. Zavala-Cerna, M.G., et al. (2015) Osteoprotegerin polymorphisms in a Mexican population with rheumatoid arthritis and generalized osteoporosis: a preliminary report. J Immunol Res 376197

  13. D’Amico L, R. I. (2012) Cross-talk between T cells and osteoclasts in bone resorption. BoneKEy Reports 1(6)

  14. Song I et al (2009) Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett 583(14):2435–2440

    Article  CAS  PubMed  Google Scholar 

  15. Hirayama T et al (2001) Cellular and humoral mechanisms of osteoclast formation and bone resorption in Gorham-Stout disease. J Pathol 195(5):624–630

    Article  CAS  PubMed  Google Scholar 

  16. Yang X et al (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41(6):928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devlin RD, Bone HG 3rd, Roodman GD (1996) Interleukin-6: a potential mediator of the massive osteolysis in patients with Gorham-Stout disease. J Clin Endocrinol Metab 81(5):1893–1897

    CAS  PubMed  Google Scholar 

  18. Rifas L, Weitzmann MN (2009) A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheum 60(11):3324–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin Z, Li X, Wan Y (2015) Minireview: nuclear receptor regulation of osteoclast and bone remodeling. Mol Endocrinol 29(2):172–186

    Article  PubMed  Google Scholar 

  20. D'Amelio P et al (2011) Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures. Osteoporos Int 22(11):2869–2877

    Article  PubMed  Google Scholar 

  21. Pagliari D et al (2015) The role of “bone immunological niche” for a new pathogenetic paradigm of osteoporosis. Anal Cell Pathol (Amst):434389

  22. Moller G, Priemel M (1999) The Gorham-Stout syndrome (Gorham’s massive osteolysis). A report of six cases with histopathological findings. The Journal of bone and joint surgery British 81(5):1893–1897

    Google Scholar 

  23. Scheller EL, Rosen CJ (2014) Whatʼs the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonomo A et al (2016) A T cell view of the bone marrow. Front Immunol 17(7):184

    Google Scholar 

  25. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42(6):551–555

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kon T et al (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16(6):1004–1014

    Article  CAS  PubMed  Google Scholar 

  27. Wiemer AJ et al (2011) A live imaging cell motility screen identifies prostaglandin E2 as a T cell stop signal antagonist. J Immunol 187(7):3663–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee SK, Lorenzo J (2006) Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 18(4):411–418

    Article  CAS  PubMed  Google Scholar 

  29. Franchi A et al (2009) CD105/endoglin expression in Gorham disease of bone. J Clin Pathol 62(2):163–167

    Article  CAS  PubMed  Google Scholar 

  30. Pettit AR et al (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43(6):976–982

    Article  PubMed  Google Scholar 

  31. Jones GB, Midgley RL, Smith GS (1958) Massive osteolysis: disappearing bones. J Bone Joint Surg Br 40B(3):494–501

    Google Scholar 

  32. Ray S et al (2012) Vanishing bone disease (Gorhamʼs disease)—a rare occurrence of unknown etiology. Indian J Pathol Microbiol 55(3):399–401

    Article  PubMed  Google Scholar 

  33. Fujiu K et al (2002) Chylothorax associated with massive osteolysis (Gorhamʼs syndrome). Ann Thorac Surg 73(6):1956–1957

    Article  PubMed  Google Scholar 

  34. Bickel WH, Brodere AC (1947) Primary lymphangioma of the ilium; report of a case. J Bone Joint Surg Am 29(2):517–522

    CAS  PubMed  Google Scholar 

  35. Banerji S et al (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edwards JR et al (2008) Lymphatics and bone. Hum Pathol 39(1):49–55

    Article  PubMed  Google Scholar 

  37. Situma M et al An aggressive lymphatic malformation (Gorhamʼs disease) leading to death of a child. J Pediatr Surg 48(1):239–242

  38. Hagendoorn J et al (2006) Platelet-derived growth factor receptor-beta in Gorhamʼs disease. Nat Clin Pract Oncol 3(12):693–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  CAS  PubMed  Google Scholar 

  40. Huber S et al (2007) Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int 71(8):771–777

    Article  CAS  PubMed  Google Scholar 

  41. Kärpänen T et al (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 20(9):1462–1472

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Guadalupe Zavala-Cerna.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Ethical Approval

This article does not contain any studies with human participants or animals by any of the authors.

Informed Consent

Informed consent was obtained from the patient and her legal representative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Barrera, M.J., Zavala-Cerna, M.G., Aguilar-Portillo, G. et al. Gorham-Stout Disease: a Clinical Case Report and Immunological Mechanisms in Bone Erosion. Clinic Rev Allerg Immunol 52, 125–132 (2017). https://doi.org/10.1007/s12016-016-8594-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-016-8594-z

Keywords

Navigation