Skip to main content

Advertisement

Log in

Autoimmune Features in Metabolic Liver Disease: A Single-Center Experience and Review of the Literature

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Non-alcoholic steatohepatitis (NASH) is the progressive phenotype of non-alcoholic fatty liver disease associated with the metabolic syndrome. The existence of autoimmune features in NASH has been reported, but its significance remains unclear. We herein report the autoantibody profile of 54 patients with histologically proven NASH and further determined the development of autoimmunity in three different murine NASH models (monosodium glutamate, CDAA (choline-deficient l-amino acid-defined), and TSOD (Tsumura Suzuki, Obese Diabetes)) at 48 weeks of age. Forty-eight percent (26/54) of NASH cases were positive for antinuclear (ANA) or antimitochondrial antibody and manifested histological signs of overlap with autoimmune hepatitis and primary biliary cirrhosis, respectively. These patients were significantly older (60 ± 10 versus 50 ± 16 years), more frequently women (81 % versus 43 %), and with more severe portal inflammatory infiltrate compared with patients without autoimmunity. In one third of mice, regardless of the model, we observed a marked lymphoid infiltrate with non-suppurative cholangitis, and several cases were ANA-positive, but none AMA-positive. Our data suggest that autoimmunity may share some pathogenetic traits with the chronic inflammation of NASH, possibly related to advanced age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIH:

Autoimmune hepatitis

AMA:

Anti-mitochondrial antibodies

ANA:

Anti-nuclear antibodies

CDAA:

Choline-deficient l-amino acid-defined

CNSDC:

Chronic non-suppurative destructive cholangitis

IL-6:

Interleukin-6

MSG:

Monosodium glutamate

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

PBC:

Primary biliary cirrhosis

TNF-α:

Tumor necrosis factor-α

TSOD:

Tsumura Suzuki, Obese Diabetes

References

  1. Selmi C, Mackay IR, Gershwin ME (2007) The immunological milieu of the liver. Semin Liver Dis 27:129–139

    Article  PubMed  CAS  Google Scholar 

  2. Williams CD, Stengel J, Asike MI et al (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–131

    Article  PubMed  Google Scholar 

  3. Liberal R, Grant CR, Mieli-Vergani G, Vergani D (2013) Autoimmune hepatitis: a comprehensive review. J Autoimmun 41:126–139

    Article  PubMed  CAS  Google Scholar 

  4. Selmi C, Bowlus CL, Gershwin ME, Coppel RL (2011) Primary biliary cirrhosis. Lancet 377:1600–1609

    Article  PubMed  CAS  Google Scholar 

  5. Selmi C, Invernizzi P, Keeffe EB et al (2004) Epidemiology and pathogenesis of primary biliary cirrhosis. J Clin Gastroenterol 38:264–271

    Article  PubMed  Google Scholar 

  6. Boberg KM, Chapman RW, Hirschfield GM, Lohse AW, Manns MP, Schrumpf E (2011) Overlap syndromes: the International Autoimmune Hepatitis Group (IAIHG) position statement on a controversial issue. J Hepatol 54:374–385

    Article  PubMed  Google Scholar 

  7. Miyakawa H, Kikuchi K, Jong-Hon K et al (2001) High sensitivity of a novel ELISA for anti-M2 in primary biliary cirrhosis. J Gastroenterol 36:33–38

    Article  PubMed  CAS  Google Scholar 

  8. Miyakawa H, Kitazawa E, Fujikawa H et al (2000) Analysis of two major anti-M2 antibodies (anti-PDC-E2/anti-BCOADC-E2) in primary biliary cirrhosis: relationship to titers of immunofluorescent anti-mitochondrial antibody. Hepatol Res Off J Jpn Soc Hepatol 18:1–9

    Article  Google Scholar 

  9. Invernizzi P, Selmi C, Ranftler C, Podda M, Wesierska-Gadek J (2005) Antinuclear antibodies in primary biliary cirrhosis. Semin Liver Dis 25:298–310

    Article  PubMed  Google Scholar 

  10. Mahady SE, George J (2012) Management of nonalcoholic steatohepatitis: an evidence-based approach. Clin Liver Dis 16:631–645

    Article  PubMed  Google Scholar 

  11. Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  12. Nakanishi Y, Tsuneyama K, Fujimoto M et al (2008) Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun 30:42–50

    Article  PubMed  CAS  Google Scholar 

  13. Sasaki Y, Shimada T, Iizuka S et al (2011) Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome. Eur J Pharmacol 662:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Sasaki Y, Suzuki W, Shimada T et al (2009) Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci 85:490–498

    Article  PubMed  CAS  Google Scholar 

  15. Kawaratani H, Tsujimoto T, Kitazawa T et al (2008) Innate immune reactivity of the liver in rats fed a choline-deficient l-amino-acid-defined diet. World J Gastroenterol WJG 14:6655–6661

    Article  CAS  Google Scholar 

  16. Sakaida I, Okita K (2005) The role of oxidative stress in NASH and fatty liver model. Hepatol Res Off J Jpn Soc Hepatol 33:128–131

    Article  CAS  Google Scholar 

  17. Nishida T, Tsuneyama K, Fujimoto M et al (2013) Spontaneous onset of nonalcoholic steatohepatitis and hepatocellular carcinoma in a mouse model of metabolic syndrome. Laboratory investigation. J Tech Methods Pathol 93:230–241

    CAS  Google Scholar 

  18. Lidar M, Lipschitz N, Agmon-Levin N et al (2012) Infectious serologies and autoantibodies in hepatitis C and autoimmune disease-associated mixed cryoglobulinemia. Clin Rev Allergy Immunol 42:238–246

    Article  PubMed  CAS  Google Scholar 

  19. Agmon-Levin N, Ram M, Barzilai O et al (2009) Prevalence of hepatitis C serum antibody in autoimmune diseases. J Autoimmun 32:261–266

    Article  PubMed  CAS  Google Scholar 

  20. Keppeke GD, Nunes E, Ferraz ML et al (2012) Longitudinal study of a human drug-induced model of autoantibody to cytoplasmic rods/rings following HCV therapy with ribavirin and interferon-alpha. PLoS One 7:e45392

    Article  PubMed  CAS  Google Scholar 

  21. Fischer S, Agmon-Levin N, Shapira Y et al (2013) Toxoplasma gondii: bystander or cofactor in rheumatoid arthritis. Immunol Res 56:287–292

    Article  PubMed  Google Scholar 

  22. Shapira Y, Poratkatz BS, Gilburd B et al (2012) Geographical differences in autoantibodies and anti-infectious agents antibodies among healthy adults. Clin Rev Allergy Immunol 42:154–163

    Article  PubMed  CAS  Google Scholar 

  23. Wakabayashi K, Lian ZX, Leung PS et al (2008) Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48:531–540

    Article  PubMed  CAS  Google Scholar 

  24. Wakabayashi K, Lian ZX, Moritoki Y et al (2006) IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology 44:1240–1249

    Article  PubMed  CAS  Google Scholar 

  25. Wakabayashi K, Yoshida K, Leung PS et al (2009) Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 155:577–586

    Article  PubMed  CAS  Google Scholar 

  26. Tsuneyama K, Moritoki Y, Kikuchi K, Nakanuma Y (2012) Pathological features of new animal models for primary biliary cirrhosis. Int J Hepatol 2012:403954

    PubMed  Google Scholar 

  27. Yang GX, Lian ZX, Chuang YH et al (2008) Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47:1974–1982

    Article  PubMed  Google Scholar 

  28. Zhang W, Sharma R, Ju ST et al (2009) Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology 49:545–552

    Article  PubMed  CAS  Google Scholar 

  29. Shoenfeld Y, Tincani A, Gershwin ME (2012) Sex gender and autoimmunity. J Autoimmun 38:J71–J73

    Article  PubMed  CAS  Google Scholar 

  30. Sawalha AH, Wang L, Nadig A et al (2012) Sex-specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity. J Autoimmun 38:J216–J222

    Article  PubMed  CAS  Google Scholar 

  31. Pennell LM, Galligan CL, Fish EN (2012) Sex affects immunity. J Autoimmun 38:J282–J291

    Article  PubMed  CAS  Google Scholar 

  32. Amur S, Parekh A, Mummaneni P (2012) Sex differences and genomics in autoimmune diseases. J Autoimmun 38:J254–J265

    Article  PubMed  CAS  Google Scholar 

  33. Selmi C, Tsuneyama K (2010) Nutrition, geoepidemiology, and autoimmunity. Autoimmun Rev 9:A267–A270

    Article  PubMed  CAS  Google Scholar 

  34. Markle JG, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088

    Article  PubMed  CAS  Google Scholar 

  35. Atarashi K, Honda K (2011) Microbiota in autoimmunity and tolerance. Curr Opin Immunol 23:761–768

    Article  PubMed  CAS  Google Scholar 

  36. Lathrop SK, Bloom SM, Rao SM et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254

    Article  PubMed  CAS  Google Scholar 

  37. Fasano A (2012) Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol 42:71–78

    Article  PubMed  CAS  Google Scholar 

  38. Lee TP, Chiang BL (2012) Sex differences in spontaneous versus induced animal models of autoimmunity. Autoimmun Rev 11:A422–A429

    Article  PubMed  Google Scholar 

  39. Miyashita T, Toyoda Y, Tsuneyama K, Fukami T, Nakajima M, Yokoi T (2012) Hepatoprotective effect of tamoxifen on steatosis and non-alcoholic steatohepatitis in mouse models. J Toxicol Sci 37:931–942

    Article  PubMed  CAS  Google Scholar 

  40. Toyoda Y, Miyashita T, Endo S et al (2011) Estradiol and progesterone modulate halothane-induced liver injury in mice. Toxicol Lett 204:17–24

    Article  PubMed  CAS  Google Scholar 

  41. Yoshikawa Y, Miyashita T, Higuchi S et al (2012) Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries. Toxicol Appl Pharmacol 264:42–50

    Article  PubMed  CAS  Google Scholar 

  42. Selmi C, Brunetta E, Raimondo MG, Meroni PL (2012) The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev 11:A531–A537

    Article  PubMed  CAS  Google Scholar 

  43. Pollard KM (2012) Gender differences in autoimmunity associated with exposure to environmental factors. J Autoimmun 38:J177–J186

    Article  PubMed  CAS  Google Scholar 

  44. Carp HJ, Selmi C, Shoenfeld Y (2012) The autoimmune bases of infertility and pregnancy loss. J Autoimmun 38:J266–J274

    Article  PubMed  CAS  Google Scholar 

  45. Fujisaka S, Usui I, Ikutani M et al (2013) Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1alpha-dependent and HIF-1alpha-independent manner in obese mice. Diabetologia 56:1403–1412

    Article  PubMed  CAS  Google Scholar 

  46. Smorlesi A, Frontini A, Giordano A, Cinti S (2012) The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev Off J Int Assoc Stud Obes 13(Suppl 2):83–96

    Article  CAS  Google Scholar 

  47. Potenza MV, Mechanick JI (2009) The metabolic syndrome: definition, global impact, and pathophysiology. Nutr Clin Pract Off Publ Am Soc Parenter Enteral Nutr 24:560–577

    Article  Google Scholar 

  48. Fujii H, Ikura Y, Arimoto J et al (2009) Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J Atheroscler Thromb 16:893–901

    Article  PubMed  CAS  Google Scholar 

  49. Mitsuyoshi H, Yasui K, Harano Y et al (2009) Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol Res Off J Jpn Soc Hepatol 39:366–373

    Article  CAS  Google Scholar 

  50. Salunga TL, Cui ZG, Shimoda S et al (2007) Oxidative stress-induced apoptosis of bile duct cells in primary biliary cirrhosis. J Autoimmun 29:78–86

    Article  PubMed  CAS  Google Scholar 

  51. Tsuneyama K, Harada K, Kono N et al (2002) Damaged interlobular bile ducts in primary biliary cirrhosis show reduced expression of glutathione-S-transferase-pi and aberrant expression of 4-hydroxynonenal. J Hepatol 37:176–183

    Article  PubMed  CAS  Google Scholar 

  52. Folci M, Meda F, Gershwin ME, Selmi C (2012) Cutting-edge issues in primary biliary cirrhosis. Clin Rev Allergy Immunol 42:342–354

    Article  PubMed  CAS  Google Scholar 

  53. De Santis M, Selmi C (2012) The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol 42:92–101

    Article  PubMed  CAS  Google Scholar 

  54. Miller FW, Alfredsson L, Costenbader KH et al (2012) Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 39:259–271

    Article  PubMed  Google Scholar 

  55. Miller FW, Pollard KM, Parks CG et al (2012) Criteria for environmentally associated autoimmune diseases. J Autoimmun 39:253–258

    Article  PubMed  CAS  Google Scholar 

  56. Selmi C, Gershwin ME (2009) The role of environmental factors in primary biliary cirrhosis. Trends in immunology 30:415–420

    Article  PubMed  CAS  Google Scholar 

  57. Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA (2013) The intestinal microbiota in chronic liver disease. Adv Immunol 117:73–97

    Article  PubMed  Google Scholar 

  58. Albano E (2012) Role of adaptive immunity in alcoholic liver disease. Int J Hepatol 2012:893026

    PubMed  Google Scholar 

  59. Selmi C, Lu Q, Humble MC (2012) Heritability versus the role of the environment in autoimmunity. J Autoimmun 39:249–252

    Article  PubMed  Google Scholar 

  60. Tian L, De Hertogh G, Fedeli M et al (2012) Loss of T cell microRNA provides systemic protection against autoimmune pathology in mice. J Autoimmun 38:39–48

    Article  PubMed  CAS  Google Scholar 

  61. Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-Villarraga A, Anaya JM (2012) Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J Autoimmun 38:J109–J119

    Article  PubMed  CAS  Google Scholar 

  62. Menon R, Di Dario M, Cordiglieri C et al (2012) Gender-based blood transcriptomes and interactomes in multiple sclerosis: involvement of SP1 dependent gene transcription. J Autoimmun 38:J144–J155

    Article  PubMed  CAS  Google Scholar 

  63. Bogdanos DP, Smyk DS, Rigopoulou EI et al (2012) Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 38:J156–J169

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Tokimasa Kumada and Mr. Hideki Hatta for their help and technical assistance with experiments and to Ms. Yukari Inoue for the excellent support in the manuscript preparation. This work was supported by JSPS KAKENHI Grant Numbers 0293341 and 10293341 and a Research grant of 2010 Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Tsuneyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuneyama, K., Baba, H., Kikuchi, K. et al. Autoimmune Features in Metabolic Liver Disease: A Single-Center Experience and Review of the Literature. Clinic Rev Allerg Immunol 45, 143–148 (2013). https://doi.org/10.1007/s12016-013-8383-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8383-x

Keywords

Navigation