Skip to main content
Log in

Hyperferritinemia is Associated with Serologic Antiphospholipid Syndrome in SLE Patients

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Ferritin may play a direct role on the immune system. We sought to determine if elevated levels of ferritin in lupus patients correlate with disease activity and organ involvement in a large cohort. Ferritin levels (gender and age adjusted) were assessed in 274 lupus serum samples utilizing the LIASON Ferritin automated immunoassay method. Significant disease activity was determined if European Consensus Lupus Activity Index (ECLAM) > 2 or Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) > 4. Utilizing an EXCEL database, we compared elevated ferritin levels to manifestations grouped by organ involvement, serology, and previous therapy. The patients were predominantly female (89%), median age was 37 years old, and disease duration was 10.6 ± 7.7 years. Hyperferritinemia was found in 18.6% of SLE patients. Compared to subjects with normal ferritin levels, a significantly greater proportion of patients with hyperferritinemia had thrombocytopenia (15.4% vs. 33.3%, p = 0.003) and lupus anticoagulant (11.3% vs. 29.0%, p = 0.01). Additionally, compared to normoferritinemic subjects, hyperferritinemic subjects had significantly higher total aCL (99.7 ± 369 vs. 30.9 ± 17.3 GPI, p = 0.02) and aCL IgM antibody levels (75.3 ± 357.4 vs. 9.3 ± 10.3 GPI, p = 0.02), and marginally lower aCL IgG antibody levels (9.2 ± 4.9 vs. 9.7 ± 3.9 GPI, p = 0.096). While the ECLAM score significantly correlated with hyperferritinemia (p = 0.04), the SLEDAI score was marginally associated with hyperferritinemia (p = 0.1). Serositis was marginally associated with hyperferritinemia, but not with other manifestations. An association with serologic APS was encountered. Hyperferritinemia was associated with thrombocytopenia, lupus anticoagulant, and anti-cardiolipin antibodies suggest that it may be an early marker for secondary antiphospholipid syndrome in SLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev 5:863–873

    CAS  Google Scholar 

  2. Hintze KJ, Theil EC (2006) Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 63:591–600

    Article  PubMed  CAS  Google Scholar 

  3. Zandman-Goddard G, Shoenfeld Y (2007) Ferritin in autoimmune diseases. Autoimmun Rev 6:457–463

    Article  PubMed  CAS  Google Scholar 

  4. Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    Article  PubMed  CAS  Google Scholar 

  5. You SA, Wang Q (2005) Ferritin in atherosclerosis. Clin Chim Acta 357:1–16

    Article  PubMed  CAS  Google Scholar 

  6. Alkhateeb A, Connor JR (2010) Nuclear ferritin: a new role for ferritin in cell biology. Biochim Biophys Acta 1800:793–797

    Article  PubMed  CAS  Google Scholar 

  7. Wang A, Fairhurst AM, Tus K et al (2009) CXCR4/CXCL12 hyperexpression plays a pivotal role in the pathogenesis of lupus. J Immunol 182:4448–4458

    Article  PubMed  CAS  Google Scholar 

  8. Chong BF, Mohan C (2009) Targeting the CXCR4/CXCL12 axis in systemic lupus erythematosus. Expert Opin Ther Targets 13:1147–1153

    Article  PubMed  CAS  Google Scholar 

  9. Wang W, Knovich M, Coffman LG, Torit FM, Torti SV (2010) Serum ferritin: past, present and future. Biochim Biophys Acta 1800:760–769

    Article  PubMed  CAS  Google Scholar 

  10. Racalcati S, Invernizzi P, Arosio P, Cairo G (2008) New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun 30:84–89

    Article  Google Scholar 

  11. Zandman-Goddard G, Shoenfeld Y (2008) Hyperferritinemia in autoimmunity. Isr Med Assoc J 10:83–85

    PubMed  Google Scholar 

  12. Janka GE (2007) Hemophagocytic syndromes. Blood Rev 21:245–253

    Article  PubMed  CAS  Google Scholar 

  13. Parodi A, Davi S, Pringe AB et al (2009) Macrophage activation syndrome in juvenile systemic lupus erythematosus. Arthritis Rheum 60:3388–3399

    Article  PubMed  CAS  Google Scholar 

  14. Orbach H, Zandman-Goddard G, Amital H et al (2007) Novel biomarkers in autoimmune diseases. Ann NY Acad Sci 1109:385–400

    Article  PubMed  CAS  Google Scholar 

  15. Grom AA (2010) Macrophage activation syndrome. Rheumatologist 12:22–30

    Google Scholar 

  16. Blake DR, Bacon PA, Eastham EJ, Brigham K (1980) Synovial fluid ferritin in rheumatoid arthritis. Br Med J 281:715–716

    Article  PubMed  CAS  Google Scholar 

  17. Muirden KD (1966) Ferritin in synovial cells in patients with rheumatoid arthritis. Ann Rheum Dis 25:387–401

    PubMed  CAS  Google Scholar 

  18. Yildirim K, Karatay S, Melikoglu MA et al (2004) Associations between acute phase reactant levels and disease activity score (DAS28) in patients with rheumatoid arthritis. Ann Clin Lab Sci 34:423–426

    PubMed  Google Scholar 

  19. Ward MM, Marx AS, Barry NN (2000) Comparison of the validity and sensitivity to change of 5 activity indices in systemic lupus erythematosus. J Rheumatol 27:664–670

    PubMed  CAS  Google Scholar 

  20. Nishaya K, Kawabata F, Ota Z (1989) Elevated urinary ferritin in lupus nephritis. J Rheumatol 16:1513–1514

    Google Scholar 

  21. Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NY Acad Sci 1012:252–266

    Article  PubMed  CAS  Google Scholar 

  22. LeVine SM, Maiti S, Emerson MR et al (2002) Apoferritin attenuates experimental allergic encephalomyelitis in SJL mice. Dev Neurosci 24:177–183

    Article  PubMed  CAS  Google Scholar 

  23. Hulet SW, Powers S, Connor JR (1999) Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. J Neurol Sci 165:48–55

    Article  PubMed  CAS  Google Scholar 

  24. Sfagos C, Makis AC, Chaidos A et al (2005) Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult Scler 11:272–275

    Article  PubMed  CAS  Google Scholar 

  25. LeVine SM, Lynch SG, Ou CN et al (1999) Ferritin, transferrin and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res 821:511–515

    Article  PubMed  CAS  Google Scholar 

  26. Sakata S, Nagai K, Maekawa H et al (1991) Serum ferritin concentration in subacute thyroiditis. Metabolism 40:683–688

    Article  PubMed  CAS  Google Scholar 

  27. Nishaya K, Hashimoto K (1997) Elevation of serum ferritin levels as a marker for active systemic lupus erythematosus. Clin Exp Rheumatol 15:39–44

    Google Scholar 

  28. Lim MK, Lee CK, Ju YS et al (2001) Serum ferritin as a serological marker of activity in systemic lupus erythematosus. Rheumatol Int 20:89–93

    Article  PubMed  CAS  Google Scholar 

  29. Beyan E, Beyan C, Demirezer A, Ertugrul E, Uzuner A (2003) The relationship between serum ferritin levels and disease activity in systemic lupus erythematosus. Scan J Rheumatol 32:225–228

    Article  CAS  Google Scholar 

  30. Hesselink DA, Aarden LA, Swak AJG (2003) Profiles of the acute-phase reactants C-reactive protein and ferritin related to the disease course of patients with systemic lupus erythematosus. Scan J Rheumatol 32:151–155

    Article  CAS  Google Scholar 

  31. Cuadrado MJ, Aguirre MA, Barbarroja N, Khamashta MA, Lopez-Pedrera CH (2010) Proteomics in antiphosholipid syndrome: a review. Lupus 19:385–388

    Article  PubMed  CAS  Google Scholar 

  32. Baek KH (2004) Aberrent gene expression associated with recurrent pregnancy loss. Mol Hum Reprod 10:291–297

    Article  PubMed  CAS  Google Scholar 

  33. Mazner Y, Hershko C, Polliak A, Konijn AM, Izak G (1979) Suppressive effect of ferritin on in vitro lymphocyte function. Br J Haematol 42:345–353

    Article  Google Scholar 

  34. Moroz C, Grunspan A, Zahalka MA et al (2006) Treatment of bone marrow with recombinant placenta immunoregulator ferritin results in myelopoeisis and T-cell suppression through modulation of the cytokine-chemokine networks. Exp Hematol 34:159–166

    Article  PubMed  CAS  Google Scholar 

  35. Bresgen N, Ohlenschlager I, Fiedler B et al (2007) Ferritin—a mediator of apoptosis? J Cell Physiol 212:157–164

    Article  PubMed  CAS  Google Scholar 

  36. Kubota T, Fukuya Y, Hashimoto R et al (2009) Possible involvement of chemokine-induced platelet activation in thrombophilic diathesis of antiphospholipid syndrome. Ann NY Acad Sci 1173:137–145

    Article  PubMed  CAS  Google Scholar 

  37. Arosio P, Levi S (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta 1800:783–792

    Article  PubMed  CAS  Google Scholar 

  38. McClain MT, Arbuckle MR, Heinlen LD et al (2004) The prevalence, onset, and clinical significance of antiphospholipid antibodies prior to the diagnosis of systemic lupus erythematosus. Arthritis Rheum 50:1226–1232

    Article  PubMed  Google Scholar 

  39. Gualtierotti R, Biggioggero M, Penatti AE, Meroni PL (2010) Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 10:3–7

    Article  PubMed  CAS  Google Scholar 

  40. Katz U, Zandman-Goddard G (2010) Drug-induced lupus: an update. Autoimmun Rev 10:46–50

    Article  PubMed  CAS  Google Scholar 

  41. Doria A, Zen M, Canova M et al (2010) SLE diagnosis and treatment: when early is early. Autoimmun Rev 10:55–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Zandman-Goddard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandman-Goddard, G., Orbach, H., Agmon-Levin, N. et al. Hyperferritinemia is Associated with Serologic Antiphospholipid Syndrome in SLE Patients. Clinic Rev Allerg Immunol 44, 23–30 (2013). https://doi.org/10.1007/s12016-011-8264-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-011-8264-0

Keywords

Navigation